Read by QxMD icon Read

Polyaniline nanofibers

Luciano M Santino, Yang Lu, Shinjita Acharya, Liana Bloom, Daniel Cotton, Aly Wayne, Julio M D'Arcy
Electrochemical capacitors fabricated with polyaniline nanofibers are cycled 150 000 times with 98% capacitance retention. These devices maintain an energy density of 11.41 Wh/kg at a power density of 4000 W/kg, 64 times greater than that of an identically fabricated device based on activated carbon (0.177 Wh/kg at 4600 W/kg). For applications requiring a higher specific energy, 33.39 Wh/kg at a specific power of 600 W/kg is obtained by widening the voltage window; this device retains 93% capacitance after 10 000 cycles...
October 20, 2016: ACS Applied Materials & Interfaces
Faeze Pournaqi, Armaghan Ghiaee, Saeid Vakilian, Abdolreza Ardeshirylajimi
Tissue engineering is a promising emerged method trying to reconstruct lost tissues that using synthetic and biomaterials and their combination with cells. The purpose of this study is increase osteoinductivity of polyethersulfone (PES) by using polyaniline (PANi). In this study, after fabrication of PES and composited PES-PANi scaffolds by electrospinning, scaffolds were characterized morphologically and mechanically. Then osteoinductivity of scaffolds was investigated by osteogenic differentiation of human mesenchymal stem cells (MSCs) cultured on the PES and PES-PANI in comparison to the tissue culture polystyrene as a control...
October 14, 2016: Biologicals: Journal of the International Association of Biological Standardization
Felipe de Salas, Isabel Pardo, Horacio J Salavagione, Pablo Aza, Eleni Amougi, Jesper Vind, Angel T Martínez, Susana Camarero
Polyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases...
2016: PloS One
Hirak K Patra, Yashpal Sharma, Mohammad Mirazul Islam, Mohammad Javad Jafari, N Arul Murugan, Hisatoshi Kobayashi, Anthony P F Turner, Ashutosh Tiwari
To cope with the rapid evolution of the tissue engineering field, it is now essential to incorporate the use of on-site responsive scaffolds. Therefore, it is of utmost importance to find new 'Intelligent' biomaterials that can respond to the physicochemical changes in the microenvironment. In this present report, we have developed biocompatible stimuli responsive polyaniline-multiwalled carbon nanotube/poly(N-isopropylacrylamide), (PANI-MWCNT/PNIPAm) composite nanofiber networks and demonstrated the physiological temperature coordinated cell grafting phenomenon on its surface...
October 6, 2016: Nanoscale
Yong Ma, Yanhui Chen, Chunping Hou, Hao Zhang, Mingtao Qiao, Hepeng Zhang, Qiuyu Zhang
We demonstrated polyaniline (PANI) dimensional transformation by adding trace amino-Fe3O4 microspheres to aniline polymerization. Different PANI nanostructures (i.e., flowers, tentacles, and nanofibers) could be produced by controlling the nucleation position and number on the surface of Fe3O4 microspheres, where hydrogen bonding were spontaneously formed between amino groups of Fe3O4 microspheres and aniline molecules. By additionally introducing an external magnetic field, PANI towers were obtained. These PANI nanostructures displayed distinctly different surface wettability in the range from hydrophobicity to hydrophilicity, which was ascribed to the synergistic effect of their dimension, hierarchy, and size...
2016: Scientific Reports
Kh Ghanbari, M Moloudi
A novel sensor was fabricated by electrochemical deposition of ZnO flower-like/polyaniline nanofiber/reduced graphene oxide nanocomposite (ZnO/PANI/RGO) on glassy carbon electrode (GCE) for direct detection of dopamine (DA) and uric acid (UA) in the presence of fixed concentration of ascorbic acid (AA). Surface morphology and characterization of the modified electrodes were confirmed by field emission scanning microscopy (FE-SEM), X-ray diffraction (XRD), Raman and FT-IR spectroscopies. For individual detection, the linear responses were in the two concentration ranges of 0...
November 1, 2016: Analytical Biochemistry
Xin Xi, Ruili Liu, Tao Huang, Yi Xu, Dongqing Wu
To enforce the interactions between polyaniline (PANI) and graphene, a facile strategy is developed in this work to fabricate the strongly coupled hybrids of PANI nanofibers and graphene (named as PAGs) by introducing different diamines to functionalize graphene oxide. As the electrode material in a two-electrode supercapacitor (SC), the ethylenediamine-functionalized hybrid (PAG-EDA) deliveries an excellent volumetric specific capacitance of 810Fcm(-3) at 5mVs(-1). The SC also manifests high cycling stability by maintaining 84...
December 1, 2016: Journal of Colloid and Interface Science
Silas K Simotwo, Christopher DelRe, Vibha Kalra
Freestanding, binder-free supercapacitor electrodes based on high-purity polyaniline (PANI) nanofibers were fabricated via a single step electrospinning process. The successful electrospinning of nanofibers with an unprecedentedly high composition of PANI (93 wt %) was made possible due to blending ultrahigh molecular weight poly(ethylene oxide) (PEO) with PANI in solution to impart adequate chain entanglements, a critical requirement for electrospinning. To further enhance the conductivity and stability of the electrodes, a small concentration of carbon nanotubes (CNTs) was added to the PANI/PEO solution prior to electrospinning to generate PANI/CNT/PEO nanofibers (12 wt % CNTs)...
August 24, 2016: ACS Applied Materials & Interfaces
Jianjun Jiang, Ziwei Zhao, Chao Deng, Fa Liu, Dejia Li, Liangchao Fang, Dan Zhang, Castro Jose M, Feng Chen, L James Lee
Carbon Nanofibers (CNFs) have shown great potential to improve the physical and mechanical properties of conventional Fiber Reinforced Polymer Composites (FRPCs) surface. Excellent dispersion CNFs into water or polymer matrix was very crucial to get good quality CNFs enhanced FRPCs. Because of the hydrophobic properties of CNFs, we apply the reversible switching principles to transfer the hydrophobic surface into hydrophilic surface by growing polyaniline nanograss on the surface of CNFs which was carried out in hydrochloric acid condition...
June 2016: Journal of Nanoscience and Nanotechnology
G B V S Lakshmi, Anshu Sharma, Pratima R Solanki, D K Avasthi
In the present work, we have studied a nanocomposite of polyaniline nanofiber-graphene microflowers (PANInf-GMF), prepared by an in situ rapid mixing polymerization method. The structural and morphological studies of the nanocomposite (PANInf-GMF) were carried out by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) and Raman spectroscopy. The mesoporous, nanofibrous and microflower structures were observed by scanning electron microscopy. The functional groups and synergetic effects were observed by FTIR and micro-Raman measurements...
August 26, 2016: Nanotechnology
Nedal Abu-Thabit, Yunusa Umar, Elaref Ratemi, Ayman Ahmad, Faraj Ahmad Abuilaiwi
A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4-12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa...
2016: Sensors
HaoTian H Shi, Hani E Naguib
The creation of a novel flexible nanocomposite fiber with conductive polymer polyaniline (PAni) coating on a polyethylene terephthalate (PET) substrate allowed for increased electrochemical performance while retaining ideal mechanical properties such as very high flexibility. Binder-free PAni-wrapped PET (PAni@PET) fiber with a core-shell structure was successfully fabricated through a novel technique. The PET nanofiber substrate was fabricated through an optimized electrospinning method, while the PAni shell was chemically polymerized onto the surface of the nanofibers...
August 12, 2016: Nanotechnology
Dingfeng Xu, Lin Fan, Lingfeng Gao, Yan Xiong, Yanfeng Wang, Qifa Ye, Aixi Yu, Honglian Dai, Yixia Yin, Jie Cai, Lina Zhang
Conducting polymers have emerged as frontrunners to be alternatives for nerve regeneration, showing a possibility of the application of polyaniline (PANI) as the nerve guidance conduit. In the present work, the cellulose hydrogel was used as template to in situ synthesize PANI via the limited interfacial polymerization method, leading to one conductive side in the polymer. PANI sub-micrometer dendritic particles with mean diameter of ∼300 nm consisting of the PANI nanofibers and nanoparticles were uniformly assembled into the cellulose matrix...
July 13, 2016: ACS Applied Materials & Interfaces
Yunlong Guo, Ting Wang, Fanhong Chen, Xiaoming Sun, Xiaofeng Li, Zhongzhen Yu, Pengbo Wan, Xiaodong Chen
A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films...
June 9, 2016: Nanoscale
Feili Lai, Yue-E Miao, Lizeng Zuo, Hengyi Lu, Yunpeng Huang, Tianxi Liu
The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogen-doped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets...
June 2016: Small
Mushtaque A Memon, Wei Bai, Jinhua Sun, Muhammad Imran, Shah Nawaz Phulpoto, Shouke Yan, Yong Huang, Jianxin Geng
Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility...
May 11, 2016: ACS Applied Materials & Interfaces
Simzar Hosseinzadeh, Matin Mahmoudifard, Farzaneh Mohamadyar-Toupkanlou, Masomeh Dodel, Atena Hajarizadeh, Mahdi Adabi, Masoud Soleimani
Among polymers, polyaniline (PANi) has been introduced as a good candidate for muscle regeneration due to high conductivity and also biocompatibility. Herein, for the first time, we report the use of electrospun nanofibrous membrane of PAN-PANi as efficient scaffold for muscle regeneration. The prepared PAN-PANi electrospun nanofibrous membrane was characterized by scanning electron microscopy (SEM), Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and tensile examination. The softer scaffolds of non-composite electrospun nanofibrous PAN govern a higher rate of cell growth in spite of lower differentiation value...
July 2016: Bioprocess and Biosystems Engineering
Matin Mahmoudifard, Masoud Soleimani, Shadie Hatamie, Soheila Zamanlui, Parviz Ranjbarvan, Manouchehr Vossoughi, Simzar Hosseinzadeh
Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay...
April 2016: Biomedical Materials
Rajiv Borah, Ashok Kumar
Polyaniline nanofibers (PNFs) synthesized by dilute polymerization method have been surface functionalized with glutaraldehyde at their N-terminals in Phosphate Buffered Saline (PBS) at P(H)=7.4 in order to achieve improved interaction of surface functionalized polyaniline nanofibers (SF-PNFs) with aromatic amino acids-Tyrosine, Tryptophan and Phenylalanine through incorporation of aldehyde (-CHO) and hydroxyl (-OH) functionalities. HRTEM reveals nanofibers of average diameter of 35.66 nm. FESEM depicts interconnected networks of nanofibers of polyaniline (PAni)...
April 1, 2016: Materials Science & Engineering. C, Materials for Biological Applications
Mingming Liu, Jing Li, Zhiguang Guo
Polyaniline (PANI) decorated commercial filtration membranes, such as stainless steel meshes (SSMs) with 5μm pore size and polyvinylidene fluoride (PVDF) membranes with 2-0.22μm pore sizes, were fabricated by a simple one-step dilute polymerization at low temperature. Lots of short PANI nanofibers were firmly and uniformly coated onto the membrane surfaces, forming rough micro- and nanoscale structures and leading to underwater superoleophobicity with low oil-adhesion characteristic. Furthermore, we systematically studied the effect of pore size and pressure difference on oil-water separation ability of the obtained membranes...
April 1, 2016: Journal of Colloid and Interface Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"