Read by QxMD icon Read

Polyaniline nanofibers

Sathish Kumar Ponnaiah, Prakash Periakaruppan, Balakumar Vellaichamy
A simple and very sensitive electrochemical sensor for the detection of uric acid (UA) has been developed based on polyaniline (PANI) nanofiber merged into silver doped iron oxide (Ag-Fe2O3) nanocomposite modified glassy carbon electrode. The synthesized ternary composite material (Ag-Fe2O3@PANI) was characterized by UV-visible spectroscopy, FT-IR spectroscopy, EDX, HR-TEM, XRD and TGA analysis. The nanocomposite modified electrode shows an exceptional electrocatalytic activity and reversibility to the oxidation of UA in 0...
March 2, 2018: Journal of Physical Chemistry. B
Nadeeka D Tissera, Ruchira N Wijesena, Samantha Rathnayake, Rohini M de Silva, K M Nalin de Silva
Electrically conductive cotton fabric was fabricated by in situ one pot oxidative polymerization of aniline. Using a simple heterogeneous polymerization method, polyaniline (PANI) nano fibers with an average fiber diameter of 40-75 nm were grafted in situ onto cotton fabric. The electrical conductivity of the PANI nanofiber grafted fabric was improved 10 fold compared to fabric grafted with PANI nanoclusters having an average cluster size of 145-315 nm. The surface morphology of the cotton fibers was characterized using SEM and AFM...
April 15, 2018: Carbohydrate Polymers
Ping Zhou, Jing Li, Wenwen Yang, Lihua Zhu, Heqing Tang
The wetting property of nanomaterials is of great importance to both fundamental understanding and potential applications. However, the study on the intrinsic wetting property of nanomaterials is interfered by organic capping agents, which are often used to lower the surface energy of nanomaterials and avoid their irreversible agglomeration. In this work, the wetting property of nanostructured polyaniline that requires no organic capping agents is investigated. Compared to hydrophilic granular particulates, polyaniline nanofibers are amphiphilic and have an excellent capability of creating Pickering emulsions at a wide range of pH...
February 6, 2018: Langmuir: the ACS Journal of Surfaces and Colloids
Ruibo Zhong, Qian Tang, Shaopeng Wang, Hongbo Zhang, Feng Zhang, Mingshu Xiao, Tiantian Man, Xiangmeng Qu, Li Li, Weijia Zhang, Hao Pei
Conducting hydrogels provide great potential for creating designer shape-morphing architectures for biomedical applications owing to their unique solid-liquid interface and ease of processability. Here, a novel nanofibrous hydrogel with significant enzyme-like activity that can be used as "ink" to print flexible electrochemical devices is developed. The nanofibrous hydrogel is self-assembled from guanosine (G) and KB(OH)4 with simultaneous incorporation of hemin into the G-quartet scaffold, giving rise to significant enzyme-like activity...
February 1, 2018: Advanced Materials
Yilin Jiang, Zhifeng Liu, Guangming Zeng, Yujie Liu, Binbin Shao, Zhigang Li, Yang Liu, Wei Zhang, Qingyun He
Hexavalent chromium (Cr(VI)) is a common hazardous contaminant in the environment and carcinogenic or mutagenic to aquatic animals and human beings. Therefore, the removal and detoxification of Cr(VI) have been attracting increasing attention of researchers. Among various conducting polymers, polyaniline (PANI)-based adsorbents have shown an excellent performance on the removal of Cr(VI) because of their redox properties, eased synthesis, and favorable biocompatibility. In this review, the characteristics of various PANI-based adsorbents were described, including PANI-modified nanofiber mats and membranes, PANI/bio-adsorbents, PANI/magnetic adsorbents, PANI/carbon adsorbents, PANI-modified clay composites, and PANI-inorganic hybrid composites...
January 6, 2018: Environmental Science and Pollution Research International
M U Anu Prathap, Carlos Iván Rodríguez, Omer Sadak, Jiehao Guan, Vijayasaradhi Setaluri, Sundaram Gunasekaran
We report the development of an antibody (anti-MC1R antibody)-functionalized polyaniline nanofibers modified screen-printed electrode capable of efficient electrochemical detection of melanoma cells at levels (1 cell per mL) not readily achieved by other methods. This immunosensor is highly selective in its detection of melanoma cells over normal human cells.
January 4, 2018: Chemical Communications: Chem Comm
John R Aggas, William Harrell, Jodie Lutkenhaus, Anthony Guiseppi-Elie
The interface between the conductive polymer, polyaniline (PAn-Cl), and gold, platinum, or an interceding layer of electrodeposited platinum on gold or platinum, markedly influences the apparent electrical properties and the electronic to ionic transition in physiological buffers. Polyester-supported, sputter-deposited gold and platinum thin films were laser patterned to yield co-planar Thin Film Electrodes (TFEs) suitable for platinization and deposition of PAn-Cl nanofibers. Electrodeposition of platinum from chloroplatinic acid (50 mC cm-2) onto gold produced larger feature sizes and larger surface roughness (23...
December 14, 2017: Nanoscale
Fatimah Syahidah Mohamad, Mohd Hazani Mat Zaid, Jaafar Abdullah, Ruzniza Mohd Zawawi, Hong Ngee Lim, Yusran Sulaiman, Norizah Abdul Rahman
This article describes chemically modified polyaniline and graphene (PANI/GP) composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether- alt -maleic acid) (PMVEA). Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR) and Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene...
December 2, 2017: Sensors
Sanjit Kumar Mahato, Madhumita Bhaumik, Arun Maji, Abhijit Dutta, Debabrata Maiti, Arjun Maity
A facile chemoselective one-pot strategy for the deprotection of oxime has been developed using Fe0 -polyaniline composite nanofiber (Fe0 -PANI), as a catalyst. Nano material based Fe0 -PANI catalyst has been synthesized via in-situ polymerization of ANI monomer and followed by reductive deposition of Fe0 onto PANI matrix. The catalyst was characterized by FE-SEM, HR-TEM, BET, XRD, ATR-FTIR, XPS and VSM techniques. The scope of the transformation was studied for aryl, alkyl and heteroarylketoxime with excellent chemoselectivity (>99%)...
November 21, 2017: Journal of Colloid and Interface Science
Choon-Sang Park, Eun Young Jung, Dong Ha Kim, Do Yeob Kim, Hyung-Kun Lee, Bhum Jae Shin, Dong Ho Lee, Heung-Sik Tae
Although polymerized aniline (polyaniline, PANI) with and without iodine (I₂) doping has already been extensively studied, little work has been done on the synthesis of PANI films using atmospheric pressure plasma (APP) deposition. Therefore, this study characterized pure and I₂-doped PANI films synthesized using an advanced APP polymerization system. The I₂ doping was conducted ex-situ and using an I₂ chamber method following the APP deposition. The pure and I₂-doped PANI films were structurally analyzed using field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time of flight secondary ion mass spectrometry (ToF-SIMS) studies...
November 6, 2017: Materials
S Muralikrishna, D H Nagaraju, R Geetha Balakrishna, Werasak Surareungchai, T Ramakrishnappa, Avinash B Shivanandareddy
Conducting polymers with graphene/graphene oxide hydrogels represent a unique class of electrode materials for sensors and energy storage applications. In this article, we report a facile in situ method for the polymerisation of aniline resulting in the decoration of 1D conducting polyaniline (PANI) nanofibers onto the surface of 2D graphene oxide (GO) nanosheets followed by hydrogel formation at elevated temperature. The synthesized nanomaterial exhibits significant properties for the highly sensitive electrochemical determination as well as removal of environmentally harmful lead (Pb(2+)) ions...
October 16, 2017: Analytica Chimica Acta
Serge Ostrovidov, Majid Ebrahimi, Hojae Bae, Hung Kim Nguyen, Sahar Salehi, Sang Bok Kim, Akichika Kumatani, Tomokazu Matsue, Xuetao Shi, Ken Nakajima, Shizu Hidema, Makoto Osanai, Ali Khademhosseini
In this study, composite gelatin-polyaniline (PANI) nanofibers doped with camphorsulfonic acid (CSA) were fabricated by electrospinning and used as substrates to culture C2C12 myoblast cells. We observed enhanced myotube formation on composite gelatin-PANI nanofibers compared to gelatin nanofibers, concomitantly with enhanced myotube maturation. Thus, in myotubes, intracellular organization, colocalization of the dihydropyridine receptor (DHPR) and ryanodine receptor (RyR), expression of genes correlated to the excitation-contraction (E-C) coupling apparatus, calcium transients, and myotube contractibility were increased...
December 13, 2017: ACS Applied Materials & Interfaces
Rajeev Kumar, M A Barakat, F A Alseroury
Nanomaterials with selective adsorption properties are in demand for environmental applications. Herein, acid etching and oxidative decomposition of melon units of graphitic carbon nitride (g-C3N4) was performed to obtain the oxidized graphitic carbon nitride (Ox-g-C3N4) nanosheets. Ox- g-C3N4 nanosheets were further decorated on the polyaniline nanofiber (Ox-g-C3N4/Pani-NF). Ox-g-C3N4/Pani-NF was well characterized and further applied for a selective removal of hexavalent chromium (Cr(VI)) form aqueous solution...
October 9, 2017: Scientific Reports
Bon Kang Gu, Sang Jun Park, Chun-Ho Kim
Conducting polymer-based scaffolds receive biological and electrical signals from the extracellular matrix (ECM) or peripheral cells, thereby promoting cell growth and differentiation. Chitin, a natural polymer, is widely used as a scaffold because it is biocompatible, biodegradable, and nontoxic. In this study, we used an electrospinning technique to fabricate conductive scaffolds from aligned chitin/polyaniline (Chi/PANi) nanofibers for the directional guidance of cells. Pure chitin and random and aligned Chi/PANi nanofiber scaffolds were characterized using field emission scanning electron microscope (FE-SEM) and by assessing wettability, mechanical properties, and electrical conductivity...
August 3, 2017: Journal of Biomaterials Science. Polymer Edition
Suradip Das, Manav Sharma, Dhiren Saharia, Kushal Sarma, Elizabeth Muir, Utpal Bora
The present study describes the fabrication of polyaniline-silk fibroin nanocomposite based nerve conduits and its subsequent implantation in a rat sciatic nerve injury model for peripheral nerve regeneration. This is the first in vivo study of polyaniline based nerve conduit describing the safety and efficacy of the conduits in treating peripheral nerve injuries. The nanocomposite was synthesised by electrospinning a mixture of silk fibroin protein and polyaniline wherein the silk nanofibers were observed to be uniformly coated with polyaniline nanoparticles...
June 20, 2017: Biomedical Materials
Lu Fang, Bo Liang, Guang Yang, Yichuan Hu, Qin Zhu, Xuesong Ye
A minimally invasive glucose biosensor capable of continuous monitoring of subcutaneous glucose has been developed in this study. This sensor was prepared using electropolymerized conductive polymer polyaniline (PANI) nanofibers as an enzyme immobilization material and polyurethane (PU)/epoxy-enhanced polyurethane (E-PU) bilayer coating as a protective membrane. The sensor showed almost the same sensitivity (63nA/mM) and linearity (0-20mM with the correlation coefficient r(2) of 0.9997) in both PBS and bovine serum tests...
April 28, 2017: Biosensors & Bioelectronics
Heun Park, Dong Sik Kim, Soo Yeong Hong, Chulmin Kim, Jun Yeong Yun, Seung Yun Oh, Sang Woo Jin, Yu Ra Jeong, Gyu Tae Kim, Jeong Sook Ha
In this study, we report on the development of a stretchable, transparent, and skin-attachable strain sensor integrated with a flexible electrochromic device as a human skin-inspired interactive color-changing system. The strain sensor consists of a spin-coated conductive nanocomposite film of poly(vinyl alcohol)/multi-walled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) on a polydimethylsiloxane substrate. The sensor exhibits excellent performance of high sensitivity, high durability, fast response, and high transparency...
June 8, 2017: Nanoscale
Zepeng Kang, Kailong Jiao, Xinping Xu, Ruiyun Peng, Shuqiang Jiao, Zongqian Hu
A three-dimensional architecture of PANI@GO hybrid was synthesized via in-situ polymerization of aniline monomers on the surface of graphene oxide (GO) and carbonized at 1600°C. The SEM images showed that surfaces of planar GO were covered by a compact nanofiber-like polyaniline (PANI) layer which presented an interconnected network. Nanofiber-like PANI on the GO surface was mostly preserved and became the carbon nanofibers (CNFs) after carbonization. The TEM images showed that the carbonized PANI grew seamlessly on the GO surface and served as conductive "network" between interlayers of GO...
May 12, 2017: Biosensors & Bioelectronics
Jian Liu, Hong Bi, Paulo Cesar Morais, Xiang Zhang, Fapei Zhang, Lin Hu
Room temperature magnetic ordering is reported for very small carbon dots (CDs), mat-like polyaniline nanofibers (Mat-PANI) and a composite of CDs@Mat-PANI containing 0.315 wt% CDs. We have found saturation magnetization (M S ) of CDs, Mat-PANI and CDs@Mat-PANI at 5 (20/300) K equals to 0.0079 (0.0048/0.0019), 0.0116 (0.0065/0.0055) and 0.0349 (0.0085/0.0077) emu/g, respectively. The M S enhancement in CDs@Mat-PANI (200% and 40% at 5 K and 300 K, respectively) is attributed to electron transfer from Mat-PANI imine N-atoms to the encapsulated CDs...
May 19, 2017: Scientific Reports
Mari C Echave, Laura S Burgo, Jose L Pedraz, Gorka Orive
Tissue engineering is considered one of the most important therapeutic strategies of regenerative medicine. The main objective of these new technologies is the development of substitutes made with biomaterials that are able to heal, repair or regenerate injured or diseased tissues and organs. These constructs seek to unlock the limited ability of human tissues and organs to regenerate. In this review, we highlight the convenient intrinsic properties of gelatin for the design and development of advanced systems for tissue engineering...
2017: Current Pharmaceutical Design
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"