Read by QxMD icon Read

Oligodendrocyte progenitor cells

Gunaseelan Narayanan, Yuan Hong Yu, Muly Tham, Hui Theng Gan, Srinivas Ramasamy, Shvetha Sankaran, Srivats Hariharan, Sohail Ahmed
Neural stem cells (NSCs) have the ability to self-renew and generate the three major neural lineages - astrocytes, neurons and oligodendrocytes. NSCs and neural progenitors (NPs) are commonly cultured in vitro as neurospheres. This protocol describes in detail how to determine the NSC frequency in a given cell population under clonal conditions. The protocol begins with the seeding of the cells at a density that allows for the generation of clonal neurospheres. The neurospheres are then transferred to chambered coverslips and differentiated under clonal conditions in conditioned medium, which maximizes the differentiation potential of the neurospheres...
October 4, 2016: Journal of Visualized Experiments: JoVE
Johanna Flygt, Fredrik Clausen, Niklas Marklund
BACKGROUND: Injury to the white matter may lead to impaired neuronal signaling and is commonly observed following traumatic brain injury (TBI). Although endogenous repair of TBI-induced white matter pathology is limited, oligodendrocyte progenitor cells (OPCs) may be stimulated to proliferate and regenerate functionally myelinating oligodendrocytes. Even though OPCs are present throughout the adult brain, little is known about their proliferative activity following axonal injury caused by TBI...
October 17, 2016: Restorative Neurology and Neuroscience
Sophie Guelfi, Hugues Duffau, Luc Bauchet, Bernard Rothhut, Jean-Philippe Hugnot
Glioblastomas are devastating and extensively vascularized brain tumors from which glioblastoma stem-like cells (GSCs) have been isolated by many groups. These cells have a high tumorigenic potential and the capacity to generate heterogeneous phenotypes. There is growing evidence to support the possibility that these cells are derived from the accumulation of mutations in adult neural stem cells (NSCs) as well as in oligodendrocyte progenitors. It was recently reported that GSCs could transdifferentiate into endothelial-like and pericyte-like cells both in vitro and in vivo, notably under the influence of Notch and TGFβ signaling pathways...
2016: Stem Cells International
C M Wen, M M Chen, F H Nan, C S Wang
In this study, cultures of neural stem-progenitor cells (NSPC) from the brain of green terror cichlid Aequidens rivulatus were established and various NSPCs were demonstrated using immunocytochemistry. All of the NSPCs expressed brain lipid-binding protein, dopamine- and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32), oligodendrocyte transcription factor 2, paired box 6 and sex determining region Y-box 2. The intensity and localisation of these proteins, however, varied among the different NSPCs. Despite being intermediate cells, NSPCs can be divided into radial glial cells, oligodendrocyte progenitor cells (OPC) and neuroblasts by expressing the astrocyte marker glial fibrillary acidic protein (GFAP), OPC marker A2B5 and neuronal markers, including acetyl-tubulin, βIII-tubulin, microtubule-associated protein 2 and neurofilament protein...
October 11, 2016: Journal of Fish Biology
J Sandström, E Eggermann, I Charvet, A Roux, N Toni, C Greggio, A Broyer, F Monnet-Tschudi, L Stoppini
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells, the possibility of generating human in vitro models has gained interest, as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues, using neural progenitor cells derived from human embryonic stem cells...
October 8, 2016: Toxicology in Vitro: An International Journal Published in Association with BIBRA
Adrián Sandoval-Hernández, María José Contreras, Jenny Jaramillo, Gonzalo Arboleda
During development and through adulthood, differentiation of diverse cell types is controlled by specific genetic and molecular programs for which transcription factors are master regulators of gene expression. Here, we present an overview of the role of nuclear receptors and their selective pharmacological modulators in oligodendrocytes linage, their role in myelination and remyelination and their potential use as a therapeutic strategy for demyelinating diseases. We discuss several aspects of nuclear receptors including: (1) the biochemistry of nuclear receptors superfamily; (2) their role on stem cells physiology, focusing in differentiation and cell removal; (3) the role of nuclear receptor in the oligodendrocytes cell linage, from oligodendrocyte progenitors cells to mature myelinating cells; and (4) the therapeutics opportunities of nuclear receptors for specific demyelinating diseases...
2016: Advances in Experimental Medicine and Biology
Jaime Eugenín-von Bernhardi, Leda Dimou
NG2-glia are a mysterious and ubiquitous glial population with a highly branched morphology. Initial studies suggested that their unique function is the generation and maintenance of oligodendrocytes in the central nervous system (CNS), important for proper myelination and therefore for axonal support and fast conduction velocity. Over the last years this simplistic notion has been dramatically changed: the wide and homogeneous distribution of NG2-glia within all areas of the developing CNS that is maintained during the whole lifespan, their potential to also differentiate into other cell types in a spatiotemporal manner, their active capability of maintaining their population and their dynamic behavior in altered conditions have raised the question: are NG2-glia simple progenitor cells or do they play further major roles in the normal function of the CNS? In this chapter, we will discuss some important features of NG2-glia like their homeostatic distribution in the CNS and their potential to differentiate into diverse cell types...
2016: Advances in Experimental Medicine and Biology
Prabhuanand Selvaraj, Lan Xiao, Cheol Lee, Saravana R K Murthy, Niamh X Cawley, Malcolm Lane, Istvan Merchenthaler, Sohyun Ahn, Y Peng Loh
Embryonic neurodevelopment involves inhibition of proliferation of multipotent neural stem cells followed by differentiation into neurons, astrocytes and oligodendrocytes to form the brain. We have identified a new neurotrophic factor, NF-α1, which inhibits proliferation and promotes differentiation of neural stem cell/progenitors derived from E13.5 mouse cortex. Inhibition of proliferation of these cells was mediated through negatively regulating the Wnt pathway and decreasing β-catenin. NF-α1 induced differentiation of neural stem cells to astrocytes by enhancing Glial Fibrillary Acidic Protein (GFAP) expression through activating the ERK1/2-Sox9 signaling pathway...
October 6, 2016: Stem Cells
Laura Ferraiuolo, Kathrin Meyer, Thomas W Sherwood, Jonathan Vick, Shibi Likhite, Ashley Frakes, Carlos J Miranda, Lyndsey Braun, Paul R Heath, Ricardo Pineda, Christine E Beattie, Pamela J Shaw, Candice C Askwith, Dana McTigue, Brian K Kaspar
Oligodendrocytes have recently been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS). Here we show that, in vitro, mutant superoxide dismutase 1 (SOD1) mouse oligodendrocytes induce WT motor neuron (MN) hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls and patients with sporadic and familial ALS, using two different reprogramming methods. All ALS oligodendrocyte lines induced MN death through conditioned medium (CM) and in coculture...
September 29, 2016: Proceedings of the National Academy of Sciences of the United States of America
H El-Tahry, Hany E Marei, A Shams, M El-Shahat, H Abdelaziz, M Abd El-Kader
No abstract text is available yet for this article.
September 22, 2016: Tissue & Cell
Osamu Imamura, Masaaki Arai, Minori Dateki, Kunio Takishima
Oligodendrocytes are the myelin-forming cells of the central nervous system. Oligodendrocyte loss and failure of myelin development result in serious human disorders, including multiple sclerosis. Previously, using oligodendrocyte progenitor cells, we have shown that donepezil, which is an acetylcholinesterase inhibitor developed for the treatment of Alzheimer's disease, stimulates myelin gene expression and oligodendrocyte differentiation. Here, we aimed to analyze the effects of donepezil on primary mouse embryonic neural stem cells (NSCs)...
September 24, 2016: Journal of Neurochemistry
David Zada, Adi Tovin, Tali Lerer-Goldshtein, Lior Appelbaum
Hypomyelination is a key symptom of the Allan-Herndon-Dudley syndrome (AHDS), a psychomotor retardation associated with mutations in the thyroid-hormone (TH) transporter MCT8. AHDS is characterized by severe intellectual deficiency, neuromuscular impairment, and brain hypothyroidism. In order to understand the mechanism for TH-dependent hypomyelination, we developed an mct8 mutant (mct8-/-) zebrafish model. The quantification of genetic markers for oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes revealed reduced differentiation of OPCs into oligodendrocytes in mct8-/- larvae and adults...
September 23, 2016: Disease Models & Mechanisms
Yiting Zhou, Jing Zhang, Lu Wang, Ying Chen, Yushan Wan, Yang He, Lei Jiang, Jing Ma, Rujia Liao, Xiangnan Zhang, Liyun Shi, Zhenghong Qin, Yudong Zhou, Zhong Chen, Weiwei Hu
Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion exhibits progressive white matter and cognitive impairments. However, its pathogenetic mechanisms are poorly understood. We investigated the role of interleukin-1β (IL-1β) and its receptor IL-1 receptor type 1 (IL-1R1) in an experimental SIVD model generated via right unilateral common carotid arteries occlusion (rUCCAO) in mice. We found that IL-1β expression was elevated in the corpus callosum at the early stages after rUCCAO...
September 20, 2016: Brain, Behavior, and Immunity
Antoine Marteyn, Anne Baron-Van Evercooren
Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating leukodystrophy resulting from proteolipid protein 1 gene (PLP1) mutations leading to oligodendrocyte loss. While neuroinflammation has recently become a common feature and actor in neurodegenerative diseases, the involvement of inflammation in PMD physiopathology is still highly debated despite evidence for strong astrogliosis and microglial cell activation. Activation of the innate immune system, and more particularly, of microglia and astrocytes, is mostly associated with the deleterious role of neuroinflammation...
December 2016: Journal of Neuroscience Research
Samah Kalakh, Abdeslam Mouihate
There is compelling evidence that microglial activation negatively impacts neurogenesis. However, microglia have also been shown to promote recruitment of newly born neurons to injured areas of the gray matter. In the present study, we explored whether demyelination-triggered inflammation alters the process of neurogenesis in the white matter. A 2-μl solution of 0.04 % ethidium bromide was stereotaxically injected into the corpus callosum of adult male rats. Brain inflammation was dampened by daily injections of progesterone (5 mg/kg, s...
September 23, 2016: Molecular Neurobiology
Mateusz M Urbanski, Lyle Kingsbury, Daniel Moussouros, Imran Kassim, Saraf Mehjabeen, Navid Paknejad, Carmen V Melendez-Vasquez
The mechanical properties of living tissues have a significant impact on cell differentiation, but remain unexplored in the context of myelin formation and repair. In the PNS, the extracellular matrix (ECM) incorporates a basal lamina significantly denser than the loosely organized CNS matrix. Inhibition of non-muscle myosin II (NMII) enhances central but impairs peripheral myelination and NMII has been implicated in cellular responses to changes in the elasticity of the ECM. To directly evaluate whether mechanotransduction plays a role in glial cell differentiation, we cultured Schwann cells (SC) and oligodendrocytes (OL) on matrices of variable elastic modulus, mimicking either their native environment or conditions found in injured tissue...
2016: Scientific Reports
Li-Chun Wang, Guillermina Almazan
During development, the secreted molecule Sonic Hedgehog (Shh) is required for lineage specification and proliferation of oligodendrocyte progenitors (OLPs), which are the glia cells responsible for the myelination of axons in the central nervous system (CNS). Shh signaling has been implicated in controlling both the generation of oligodendrocytes (OLGs) during embryonic development and their production in adulthood. Although, some evidence points to a role of Shh signaling in OLG development, its involvement in OLG differentiation remains to be fully determined...
September 17, 2016: Neurochemical Research
Megan O'Rourke, Carlie L Cullen, Loic Auderset, Kimberley A Pitman, Daniela Achatz, Robert Gasperini, Kaylene M Young
In the central nervous system (CNS) platelet derived growth factor receptor alpha (PDGFRα) is expressed exclusively by oligodendrocyte progenitor cells (OPCs), making the Pdgfrα promoter an ideal tool for directing transgene expression in this cell type. Two Pdgfrα-CreERT2 mouse lines have been generated for this purpose which, when crossed with cre-sensitive reporter mice, allow the temporally restricted labelling of OPCs for lineage-tracing studies. These mice have also been used to achieve the deletion of CNS-specific genes from OPCs...
2016: PloS One
Chan-Il Choi, Ki Hyun Yoo, Syed Mohammed Qasim Hussaini, Byeong Tak Jeon, John Welby, Haiyun Gan, Isobel Scarisbrick, Zhiguo Zhang, Darren J Baker, Jan M van Deursen, Moses Rodriguez, Mi-Hyeon Jang
Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of normal and aberrant myelination remain incompletely understood. Here we report that axon myelination and related motor function are dependent on BubR1, a mitotic checkpoint protein that has been linked to progeroid phenotypes when expressed at low levels and healthy lifespan when overabundant...
September 12, 2016: Aging
Jamie L Lim, Susanne M A van der Pol, Wia Baron, Joe M McCord, Helga E de Vries, Jack van Horssen
Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs). Here, we investigated the efficacy of sulforaphane (SFN), monomethyl fumarate (MMF) and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation...
September 7, 2016: Antioxidants (Basel, Switzerland)
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"