Read by QxMD icon Read


Aleksandra Margetić, Zoran Vujčić
Yeast Saccharomyces cerevisiae is the most significant source of enzyme invertase. It is mainly used in the food industry as a soluble or immobilized enzyme. The greatest amount of invertase is located in the periplasmic space in yeast. In this work it was isolated two forms of enzyme from yeastS. cerevisiae cell, soluble and cell wall invertase (CWI). Both forms of enzyme showed same temperature optimum (60°C), similar pH optimum and kinetic parameters. The significant difference between these biocatalysts was observed in their thermal stability, stability in urea and methanol solution...
October 13, 2016: Preparative Biochemistry & Biotechnology
Chanchal Kumar, Jitendra Wagh, G Archana, G Naresh Kumar
Enterobacter asburiae PSI3 solubilizes mineral phosphates in the presence of glucose by the secretion of gluconic acid generated by the action of a periplasmic pyrroloquinoline quinone dependent glucose dehydrogenase. In order to achieve mineral phosphate solubilization phenotype in the presence of sucrose, plasmids pCNK4 and pCNK5 containing genes encoding the invertase enzyme of Zymomonas mobilis (invB) and of Saccharomyces cerevisiae (suc2) under constitutive promoters were constructed with malE signal sequence (in case of invB alone as the suc2 is secreted natively)...
December 2016: World Journal of Microbiology & Biotechnology
Nore Struyf, Jitka Laurent, Bianca Lefevere, Joran Verspreet, Kevin J Verstrepen, Christophe M Courtin
It is generally believed that maltose drives yeast-mediated bread dough fermentation. The relative importance of fructose and glucose, released from wheat fructan and sucrose by invertase, compared to maltose is, however, not documented. This is surprising given the preference of yeast for glucose and fructose over maltose. This study revealed that, after 2h fermentation of wheat flour dough, about 44% of the sugars consumed were generated by invertase-mediated degradation of fructan, raffinose and sucrose...
March 1, 2017: Food Chemistry
Zahra Gerivani, Elham Vashaee, Hamid Reza Sadeghipour, Mahnaz Aghdasi, Zahra-Sadat Shobbar, Majid Azimmohseni
Tree seed dormancy release by cold stratification accompanies with the embryo increased gluconeogenesis competence. Cyanide also breaks seed dormancy however, integrated information about its effects on carbon metabolism is lacking. Accordingly, the impacts of HCN on germination, lipid gluconeogenesis and sugar transport capacity of walnut (Juglans regia L.) kernels were investigated during 10-days period prior to radicle protrusion. HCN increased walnut kernel germination and within four days of kernel incubation, hastened the decline of starch, reducing and non-reducing sugars and led to greater activities of alkaline invertase and glucose-6-phosphate dehydrogenase...
November 2016: Plant Science: An International Journal of Experimental Plant Biology
Chunsha Zhang, Hongwei Zhang, Zongxiang Zhan, Bingjiang Liu, Zhentai Chen, Yi Liang
Allium cepa L. is a widely cultivated and economically significant vegetable crop worldwide, with beneficial dietary and health-related properties, but its sucrose metabolism is still poorly understood. To analyze sucrose metabolism during bulb swelling, and the development of sweet taste in onion, a global transcriptome profile of onion bulbs was undertaken at three different developmental stages, using RNA-seq. A total of 79,376 unigenes, with a mean length of 678 bp, was obtained. In total, 7% of annotated Clusters of Orthologous Groups (COG) were involved in carbohydrate transport and metabolism...
2016: Frontiers in Plant Science
Guozheng Qin, Zhu Zhu, Weihao Wang, Jianghua Cai, Yong Chen, Li Li, Shiping Tian
Fruit ripening is a complex process that involves a series of physiological and biochemical changes that ultimately influence fruit quality traits, such as color and flavor. Sugar metabolism is an important factor in ripening and there is evidence that it influences various aspects of ripening, although the associated mechanism is not well understood. In this study, we identified and analyzed the expression of 36 genes involved in sucrose metabolism in ripening tomato (Solanum lycopersicum) fruit. Chromatin immunoprecipitation and gel mobility shift assays indicated that SlVIF, which encodes a vacuolar invertase inhibitor, and SlVI, encoding a vacuolar invertase, are directly regulated by the global fruit ripening regulator RIN (RIPENING INHIBITOR)...
September 30, 2016: Plant Physiology
Kai Yu, Kok Siong Ang, Dong-Yup Lee
Codon optimization has been widely used for designing native or synthetic genes to enhance their expression in heterologous host organisms. We recently developed Codon Optimization On-Line (COOL) which is a web-based tool to provide multi-objective codon optimization functionality for synthetic gene design. COOL provides a simple and flexible interface for customizing codon optimization based on several design parameters such as individual codon usage, codon pairing, and codon adaptation index. User-defined sequences can also be compared against the COOL optimized ones to show the extent by which the user's sequences can be evaluated and further improved...
2017: Methods in Molecular Biology
Patricia D C Schaker, Alessandra C Palhares, Lucas M Taniguti, Leila P Peters, Silvana Creste, Karen S Aitken, Marie-Anne Van Sluys, João P Kitajima, Maria L C Vieira, Claudia B Monteiro-Vitorello
Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission...
2016: PloS One
Wenqiang Wang, Qunqun Hao, Fengxia Tian, Qinxue Li, Wei Wang
A wheat stay-green mutant, tasg1, was observed to exhibit significantly delayed senescence in the late developmental stage. The photosynthetic capacity of the flag leaf was greater in tasg1 than in wild type (WT) plants. In addition, the grain volume of tasg1 was significantly higher than that of WT at the early filling stage. The content of various cytokinins (CKs) in the grain was significantly higher in tasg1 than in WT and was accompanied by an upregulated expression of some cell cycle-related genes. Examination of the metabolism of soluble sugars in tasg1 and WT revealed that the concentrations of glucose (Glu), fructose (Fru), and sucrose (Suc) were higher in the flag leaves and grains of tasg1 than in WT plants...
2016: PloS One
Yingbiao Zhou, Yueming Zhu, Longhai Dai, Yan Men, Jinhai Wu, Juankun Zhang, Yuanxia Sun
Melibiose is widely used as a functional carbohydrate. Whole-cell biocatalytic production of melibiose from raffinose could reduce its cost. However, characteristics of strains for whole-cell biocatalysis and mechanism of such process are unclear. We compared three different Saccharomyces cerevisiae strains (liquor, wine, and baker's yeasts) in terms of concentration variations of substrate (raffinose), target product (melibiose), and by-products (fructose and galactose) in whole-cell biocatalysis process. Distinct difference was observed in whole-cell catalytic efficiency among three strains...
August 30, 2016: Applied Biochemistry and Biotechnology
Junpei Zhou, Limei He, Yajie Gao, Nanyu Han, Rui Zhang, Qian Wu, Junjun Li, Xianghua Tang, Bo Xu, Junmei Ding, Zunxi Huang
A glycoside hydrolase family 32 invertase from Bacillus sp. HJ14 was expressed in Escherichia coli. The purified recombinant enzyme (rInvHJ14) showed typical biochemical properties of low-temperature-active and alkaline enzymes: (i) rInvHJ14 was active and stable in the range of pH 7.0-9.5 with an apparent pH optimum of 8.0; (ii) rInvHJ14 was most active but not stable at 30-32.5 °C, with 19.7, 48.2 and 82.1% of its maximum activity when assayed at 0, 10 and 20 °C, respectively, and the Ea, ΔG(*) (30 °C), Km (30 °C) and kcat (30 °C) values for hydrolysis of sucrose by rInvHJ14 was 47...
2016: Scientific Reports
Wenjun Qian, Chuan Yue, Yuchun Wang, Hongli Cao, Nana Li, Lu Wang, Xinyuan Hao, Xinchao Wang, Bin Xiao, Yajun Yang
Fourteen invertase genes were identified in the tea plant, all of which were shown to participate in regulating growth and development, as well as in responding to various abiotic stresses. Invertase (INV) can hydrolyze sucrose into glucose and fructose, which plays a principal role in regulating plant growth and development as well as the plants response to various abiotic and biotic stresses. However, currently, there is a lack of reported information, regarding the roles of INVs in either tea plant development or in the tea plants response to various stresses...
November 2016: Plant Cell Reports
Qiusheng Kong, Lingyun Gao, Lei Cao, Yue Liu, Hameed Saba, Yuan Huang, Zhilong Bie
Melon (Cucumis melo L.) is an attractive model plant for investigating fruit development because of its morphological, physiological, and biochemical diversity. Quantification of gene expression by quantitative reverse transcription polymerase chain reaction (qRT-PCR) with stably expressed reference genes for normalization can effectively elucidate the biological functions of genes that regulate fruit development. However, the reference genes for data normalization in melon fruits have not yet been systematically validated...
2016: Frontiers in Plant Science
Rajeev N Bahuguna, Celymar A Solis, Wanju Shi, Krishna S V Jagadish
High night temperature (HNT) is a major constraint to sustaining global rice production under future climate. Physiological and biochemical mechanisms were elucidated for HNT-induced grain yield and quality loss in rice. Contrasting rice cultivars (N22, tolerant; Gharib, susceptible; IR64, high yielding with superior grain quality) were tested under control (23 °C) and HNT (29 °C) using unique field based tents from panicle initiation till physiological maturity. HNT affected 1000 grain weight, grain yield, grain chalk and amylose content in Gharib and IR64...
August 11, 2016: Physiologia Plantarum
Susana M Paixão, Bruno F Arez, José C Roseiro, Luís Alves
Biodesulfurization can be a complementary technology to the hydrodesulfurization, the commonly physical-chemical process used for sulfur removal from crude oil. The desulfurizing bacterium Gordonia alkanivorans strain 1B as a fructophilic microorganism requires fructose as C-source. In this context, the main goal of this work was the optimization of a simultaneous saccharification and fermentation (SSF) approach using the Zygosaccharomyces bailii strain Talf1 crude enzymes with invertase activity and sucrose as a cheaper fructose-rich commercial C-source (50% fructose) towards dibenzothiophene (DBT) desulfurization by strain 1B...
November 1, 2016: Journal of Environmental Management
P P Waifalkar, S B Parit, A D Chougale, Subasa C Sahoo, P S Patil, P B Patil
Industrially important invertase enzyme was immobilized on chitosan coated sol gel derived γ-Fe2O3 magnetic nanoparticles (MNPs) to enable it for repetitive use by magnetic separation. MNPs were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), field emission scanning electron microscope (FE-SEM), Fourier transform infrared (FTIR) spectrometer and magnetic measurements. FTIR studies confirmed successful immobilization of invertase on MNPs. The ability to convert sucrose into invert syrup was enhanced in immobilized invertase compared to that of free enzyme...
November 15, 2016: Journal of Colloid and Interface Science
Negin Shahryar, Reza Maali-Amiri
Metabolic acclimation of plants to cold stress may be of great importance for their growth, survival and crop productivity. The accumulation carbohydrates associated with cold tolerance (CT), transcript levels for genes encoding related enzymes along with damage indices were comparatively studied in three genotypes of bread and durum wheats differing in sensitivity. Two (Norstar, bread wheat and Gerdish, durum wheat) were tolerant and the other, SRN (durum wheat), was susceptible to cold stress. During cold stress (-5°C for 24h), the contents of electrolyte leakage index (ELI) in Norstar and then Gerdish plants were lower than that of SRN plants, particularly in cold acclimated (CA) plants (4°C for 14days), confirming lethal temperature 50 (LT50) under field conditions...
October 1, 2016: Journal of Plant Physiology
Nicholas A Bright, Luther J Davis, J Paul Luzio
The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active...
September 12, 2016: Current Biology: CB
N Farhat, A Smaoui, M Laurence, B Porcheron, R Lemoine, C Abdelly, M Rabhi
Being the principal product of photosynthesis, sucrose is involved in many metabolic processes in plants. As magnesium (Mg) is phloem mobile, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed. Mg deficiency effects on carbohydrate contents and invertase activities were determined in Sulla carnosa Desf. Plants were grown hydroponically at different Mg concentrations (0.00, 0.01, 0.05 and 1.50 mM Mg) for one month. Mineral analysis showed that Mg contents were drastically diminished in shoots and roots mainly at 0...
August 4, 2016: Plant Biology
Da Wang, Fu-Li Li, Shi-An Wang
Commercial fructo-oligosaccharides (FOS) are predominantly produced from sucrose by transfructosylation process that presents a maximum theoretical yield below 0.60gFOSgSucrose(-1). To obtain high-content FOS, costly purification is generally employed. Additionally, high-content FOS can be produced from inulin by using endo-inulinases. However, commercial endo-inulinases have not been extensively used in scale-up production of FOS. In the present study, a one-step bioprocess that integrated endo-inulinase production, FOS fermentation, and non-FOS sugars removal into one reactor was proposed to produce high-content FOS from inulin...
October 20, 2016: Carbohydrate Polymers
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"