Read by QxMD icon Read


Mengxing Ouyang, Winfield Hill, Jung Hyun Lee, Soojung Claire Hur
Successful developments of new therapeutic strategies often rely on the ability to deliver exogenous molecules into cytosol. We have developed a versatile on-chip vortex-assisted electroporation system, engineered to conduct sequential intracellular delivery of multiple molecules into various cell types at low voltage in a dosage-controlled manner. Micro-patterned planar electrodes permit substantial reduction in operational voltages and seamless integration with an existing microfluidic technology. Equipped with real-time process visualization functionality, the system enables on-chip optimization of electroporation parameters for cells with varying properties...
March 20, 2017: Scientific Reports
Mario Vincenzo Russo, Pasquale Avino, Ivan Notardonato
This paper is focused on the determination of phthalates (PAEs), compounds "plausibly" endocrine disruptors, in baby food products by means of a method based on ultrasound-vortex-assisted liquid-liquid microextraction coupled with GC-IT/MS (UVALLME-GC-IT/MS). Particularly, the whole procedure allows the determination of six phthalates such as DMP, DEP, DBP, iBcEP, BBP and DEHP. After dissolution of 0.1g product sample and addition of anthracene as Internal Standard, 250μL of n-heptane are used as extraction solvent...
November 25, 2016: Journal of Chromatography. A
Naoya Kanazawa, Shinichiro Seki, Yoshinori Tokura
The concept of a skyrmion, which was first introduced by Tony Skyrme in the field of particle physics, has become widespread in condensed matter physics to describe various topological orders. Skyrmions in magnetic materials have recently received particular attention; they represent vortex-like spin structures with the character of nanometric particles and produce fascinating physical properties rooted in their topological nature. Here, a series of noncentrosymmetric ferromagnets hosting skyrmions is reviewed: B20 metals, Cu2 OSeO3 , Co-Zn-Mn alloys, and GaV4 S8 , where Dzyaloshinskii-Moriya interaction plays a key role in the stabilization of skyrmion spin texture...
March 17, 2017: Advanced Materials
G Spektor, D Kilbane, A K Mahro, B Frank, S Ristok, L Gal, P Kahl, D Podbiel, S Mathias, H Giessen, F-J Meyer Zu Heringdorf, M Orenstein, M Aeschlimann
The ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted much interest. The physical properties of light with a helical wavefront can be confined onto two-dimensional surfaces with subwavelength dimensions in the form of plasmonic vortices, opening avenues for thus far unknown light-matter interactions. Because of their extreme rotational velocity, the ultrafast dynamics of such vortices remained unexplored. Here we show the detailed spatiotemporal evolution of nanovortices using time-resolved two-photon photoemission electron microscopy...
March 17, 2017: Science
Roel L F van der Palen, Alex J Barker, Emilie Bollache, Julio Garcia, Michael J Rose, Pim van Ooij, Luciana T Young, Arno A W Roest, Michael Markl, Joshua D Robinson, Cynthia K Rigsby
BACKGROUND: Blood flow dynamics make it possible to better understand the development of aortopathy and cardiovascular events in patients with Marfan syndrome (MFS). Aortic 3D blood flow characteristics were investigated in relation to aortic geometry in children and adolescents with MFS. METHODS: Twenty-five MFS patients (age 15.6 ± 4.0 years; 11 females) and 21 healthy controls (age 16.0 ± 2.6 years; 12 females) underwent magnetic resonance angiography and 4D flow CMR for assessment of thoracic aortic size and 3D blood flow velocities...
March 17, 2017: Journal of Cardiovascular Magnetic Resonance
Patrick Figliozzi, Nishant Sule, Zijie Yan, Ying Bao, Stanislav Burov, Stephen K Gray, Stuart A Rice, Suriyanarayanan Vaikuntanathan, Norbert F Scherer
To date investigations of the dynamics of driven colloidal systems have focused on hydrodynamic interactions and often employ optical (laser) tweezers for manipulation. However, the optical fields that provide confinement and drive also result in electrodynamic interactions that are generally neglected. We address this issue with a detailed study of interparticle dynamics in an optical ring vortex trap using 150-nm diameter Ag nanoparticles. We term the resultant electrodynamically interacting nanoparticles a driven optical matter system...
February 2017: Physical Review. E
Kazem Hejranfar, Mohammad Hossein Saadat, Sina Taheri
In this work, a high-order weighted essentially nonoscillatory (WENO) finite-difference lattice Boltzmann method (WENOLBM) is developed and assessed for an accurate simulation of incompressible flows. To handle curved geometries with nonuniform grids, the incompressible form of the discrete Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) approximation is transformed into the generalized curvilinear coordinates and the spatial derivatives of the resulting lattice Boltzmann equation in the computational plane are solved using the fifth-order WENO scheme...
February 2017: Physical Review. E
M A T van Hinsberg, H J H Clercx, F Toschi
The Stokes drag force and the gravity force are usually sufficient to describe the behavior of sub-Kolmogorov-size (or pointlike) heavy particles in turbulence, in particular when the particle-to-fluid density ratio ρ_{p}/ρ_{f}≳10^{3} (with ρ_{p} and ρ_{f} the particle and fluid density, respectively). This is, in general, not the case for smaller particle-to-fluid density ratios, in particular not for ρ_{p}/ρ_{f}≲10^{2}. In that case the pressure gradient force, added mass effects, and the Basset history force also play important roles...
February 2017: Physical Review. E
Mani Fathali, Saber Khoei
Time evolution of the fully resolved incompressible homogeneous turbulent shear flow in noninteger Fourier dimensions is numerically investigated. The Fourier dimension of the flow field is extended from the integer value 3 to the noninteger values by projecting the Navier-Stokes equation on the fractal set of the active Fourier modes with dimensions 2.7≤d≤3.0. The results of this study revealed that the dynamics of both large and small scale structures are nontrivially influenced by changing the Fourier dimension d...
February 2017: Physical Review. E
Andreas Krämer, Knut Küllmer, Dirk Reith, Wolfgang Joppich, Holger Foysi
The lattice Boltzmann method is a simulation technique in computational fluid dynamics. In its standard formulation, it is restricted to regular computation grids, second-order spatial accuracy, and a unity Courant-Friedrichs-Lewy (CFL) number. This paper advances the standard lattice Boltzmann method by introducing a semi-Lagrangian streaming step. The proposed method allows significantly larger time steps, unstructured grids, and higher-order accurate representations of the solution to be used. The appealing properties of the approach are demonstrated in simulations of a two-dimensional Taylor-Green vortex, doubly periodic shear layers, and a three-dimensional Taylor-Green vortex...
February 2017: Physical Review. E
Giuseppe Vallone
Laguerre-Gauss (LG) modes represent an orthonormal basis set of solutions of the paraxial wave equation. LG modes are characterized by two integer parameters n and ℓ that are related to the radial and azimuthal profile of the beam. The physical dimension of the mode is instead determined by the beam waist parameter w<sub>0</sub>: only LG modes with the same w<sub>0</sub> satisfy the orthogonality relation. Here, we derive the scalar product between two LG modes with different beam waists and show how this result can be exploited to derive different expansions of a generic beam in terms of LG modes...
March 15, 2017: Optics Letters
Zhaoyang Zhang, Danmeng Ma, Yiqi Zhang, Mingtao Cao, Zhongfeng Xu, Yanpeng Zhang
We experimentally generate a vortex beam through a four-wave mixing (FWM) process after satisfying the phase-matching condition in a rubidium atomic vapor cell with a photonic band gap (PBG) structure. The observed FWM vortex can also be viewed as the reflected part of the launched probe vortex from the PBG. Further, we investigate the propagation behaviors, including the spatial shift and splitting of the probe and FWM vortices in the medium with enhanced Kerr nonlinearity induced by electromagnetically induced transparency...
March 15, 2017: Optics Letters
Adam C DeVoria, Kamran Mohseni
This paper studies low-aspect-ratio ([Formula: see text]) rectangular wings at high incidence and in side-slip. The main objective is to incorporate the effects of high angle of attack and side-slip into a simplified vortex model for the forces and moments. Experiments are also performed and are used to validate assumptions made in the model. The model asymptotes to the potential flow result of classical aerodynamics for an infinite aspect ratio. The [Formula: see text] → 0 limit of a rectangular wing is considered with slender body theory, where the side-edge vortices merge into a vortex doublet...
February 2017: Proceedings. Mathematical, Physical, and Engineering Sciences
Xin Cheng, Mao Sun
Most of the previous studies on Weis-Fogh clap-fling mechanism have focused on the vortex structures and velocity fields. Detailed pressure distribution results are provided for the first time in this study to reveal the differences between the full and the partial clap-fling motions. The two motions are studied by numerically solving the Navier-Stokes equations in moving overset grids. The Reynolds number is set to 20, relevant to the tiny flying insects. The following has been shown: (1) During the clap phase, the wings clap together and create a high pressure region in the closing gap between wings, greatly increasing the positive pressure on the lower surface of wing, while pressure on the upper surface is almost unchanged by the interaction; during the fling phase, the wings fling apart and create a low pressure region in the opening gap between wings, greatly increasing the suction pressure on the upper surface of wing, while pressure on the lower surface is almost unchanged by the interaction; (2) The interference effect between wings is most severe at the end of clap phase and the start of the fling phase: two sharp force peaks (8-9 times larger than that of the one-winged case) are generated...
2017: PeerJ
Ankita Asati, G N V Satyanarayana, Devendra K Patel
An efficient and inexpensive method using vortex-assisted surfactant-enhanced emulsification microextraction (VASEME) based on solidification of floating organic droplet coupled with ultraperformance liquid chromatography-tandem mass spectrometry is proposed for the analysis of glucocorticoids in water samples (river water and hospital wastewater). VASEME was optimized by the experimental validation of Plackett-Burman design and central composite design, which has been co-related to experimental design. Plackett-Burman design showed that factors such as vortex time, surfactant concentration, and pH significantly affect the extraction efficiency of the method...
March 10, 2017: Analytical and Bioanalytical Chemistry
Jehill D Parikh, Jayant Kakarla, Bernard Keavney, John J O'Sullivan, Gary A Ford, Andrew M Blamire, Kieren G Hollingsworth, Louise Coats
AIM: To investigate atrial flow patterns in the normal adult heart, to explore whether caval vein arrangement and patency of the foramen ovale (PFO) may be associated with flow pattern. MATERIALS AND METHODS: Time-resolved, three-dimensional velocity encoded magnetic resonance imaging (4D flow) was employed to assess atrial flow patterns in thirteen healthy subjects (6 male, 40 years, range 25-50) and thirteen subjects (6 male, 40 years, range 21-50) with cryptogenic stroke and patent foramen ovale (CS-PFO)...
2017: PloS One
Avraham Klein, Oded Agam, Igor L Aleiner
We study the impact of the nonanalytic reconstruction of vortex cores on static vortex structures in weakly coupled superfluids. We show that, in rotating two-dimensional systems, the Abrikosov vortex lattice is unstable to vortex core deformation: Each zero of the wave function becomes a cut of finite length. The directors characterizing the orientations of the cuts are themselves ordered in superstructures due either to surface effects or to interaction with shear deformations of the lattice (spiral structure)...
February 24, 2017: Physical Review Letters
Yuzhu Jiang, Ran Qi, Zhe-Yu Shi, Hui Zhai
In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices...
February 24, 2017: Physical Review Letters
Liang He, Lukas M Sieberer, Sebastian Diehl
We find a first-order transition driven by the strength of nonequilibrium conditions of one-dimensional driven open condensates. Associated with this transition is a new stable nonequilibrium phase, space-time vortex turbulence, whose vortex density and quasiparticle distribution show strongly nonthermal behavior. Below the transition, we identify a new time scale associated with noise-activated unbound space-time vortices, beyond which, the temporal coherence function changes from a Kardar-Parisi-Zhang-type subexponential to a disordered exponential decay...
February 24, 2017: Physical Review Letters
Teresa M Brophy, Soracha E Ward, Thomas R McGimsey, Sonja Schneppenheim, Clive Drakeford, Jamie M O'Sullivan, Alain Chion, Ulrich Budde, James S O'Donnell
OBJECTIVE: Previous studies have demonstrated a role for plasmin in regulating plasma von Willebrand factor (VWF) multimer composition. Moreover, emerging data have shown that plasmin-induced cleavage of VWF is of particular importance in specific pathological states. Interestingly, plasmin has been successfully used as an alternative to ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif) in a mouse model of thrombotic thrombocytopenic purpura. Consequently, elucidating the molecular mechanisms through which plasmin binds and cleaves VWF is not only of basic scientific interest but also of direct clinical importance...
March 9, 2017: Arteriosclerosis, Thrombosis, and Vascular Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"