Read by QxMD icon Read

Cadherin dendritic

Kousyoku Sai, Shujie Wang, Aika Kaito, Takeshi Fujiwara, Tomohiko Maruo, Yu Itoh, Muneaki Miyata, Shotaro Sakakibara, Naoyuki Miyazaki, Kazuyoshi Murata, Yuuki Yamaguchi, Tomohiro Haruta, Hideo Nishioka, Yuki Motojima, Miyuki Komura, Kazushi Kimura, Kenji Mandai, Yoshimi Takai, Akira Mizoguchi
A hippocampal mossy fiber synapse, which is implicated in learning and memory, has a complex structure in which mossy fiber boutons attach to the dendritic shaft by puncta adherentia junctions (PAJs) and wrap around a multiply-branched spine, forming synaptic junctions. Here, we electron microscopically analyzed the ultrastructure of this synapse in afadin-deficient mice. Transmission electron microscopy analysis revealed that typical PAJs with prominent symmetrical plasma membrane darkening undercoated with the thick filamentous cytoskeleton were observed in the control synapse, whereas in the afadin-deficient synapse, atypical PAJs with the symmetrical plasma membrane darkening, which was much less in thickness and darkness than those of the control typical PAJs, were observed...
May 12, 2017: Journal of Comparative Neurology
Desanka Milanovic, Vesna Pesic, Natasa Loncarevic-Vasiljkovic, Vladimir Avramovic, Vesna Tesic, Vesna Jevtovic-Todorovic, Selma Kanazir, Sabera Ruzdijic
Propofol is a general anesthetic commonly used in pediatric clinical practices. Experimental findings demonstrate that anesthetics induce widespread apoptosis and cognitive decline in a developing brain. Although anesthesia-mediated neurotoxicity is the most prominent during intense period of synaptogenesis, the effects of an early anesthesia exposure on the synapses are not well understood. The aim of this study was to examine the effects of neonatal propofol anesthesia on the expression of key proteins that participate in synaptogenesis and synaptic plasticity and to evaluate long-term neurobehavioral abnormalities in the mature adult brain...
April 24, 2017: Neurotoxicity Research
Vsevolod Bodrikov, Aline Pauschert, Gaga Kochlamazashvili, Claudia A O Stuermer
Reggie-1 and -2 (flotillins) reside at recycling vesicles and promote jointly with Rab11a the targeted delivery of cargo. Recycling is essential for synapse formation suggesting that reggies and Rab11a may regulate the development of spine synapses. Recycling vesicles provide cargo for dendritic growth and recycle surface glutamate receptors (AMPAR, GluA) for long-term potentiation (LTP) induced surface exposure. Here, we show reduced number of spine synapses and impairment of an in vitro correlate of LTP in hippocampal neurons from reggie-1 k...
March 2017: Experimental Neurology
Yu-Chih Lin, Jeannine A Frei, Michaela B C Kilander, Wenjuan Shen, Gene J Blatt
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals' ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity...
2016: Frontiers in Cellular Neuroscience
Aya Yokota-Nakatsuma, Yoshiharu Ohoka, Hajime Takeuchi, Si-Young Song, Makoto Iwata
Retinoic acid (RA)-producing CD103(+) mature dendritic cells (DCs) in mesenteric lymph nodes (MLNs) play crucial roles in gut immunity. GM-CSF and RA contribute to the expression of the RA-producing enzyme ALDH1A2. However, additional signals appeared to be required for inducing ALDH1A2(high) mature DCs from immature DCs. We found here that TLR ligands (Ls) and immobilized E-cadherin could provide such signals in FLT3-L-generated bone marrow (BM)-derived DCs after treatment with GM-CSF and the RA receptor agonist Am80...
November 29, 2016: Scientific Reports
Dev Sharan Sams, Stefano Nardone, Dmitriy Getselter, Dana Raz, Moran Tal, Prudhvi Raj Rayi, Hanoch Kaphzan, Ofir Hakim, Evan Elliott
CCCTC-binding factor (CTCF) is an organizer of higher-order chromatin structure and regulates gene expression. Genetic studies have implicated mutations in CTCF in intellectual disabilities. However, the role of CTCF-mediated chromatin structure in learning and memory is unclear. We show that depletion of CTCF in postmitotic neurons, or depletion in the hippocampus of adult mice through viral-mediated knockout, induces deficits in learning and memory. These deficits in learning and memory at the beginning of adulthood are correlated with impaired long-term potentiation and reduced spine density, with no changes in basal synaptic transmission and dendritic morphogenesis and arborization...
November 22, 2016: Cell Reports
James Gilbert, Heng-Ye Man
Our previous work showed that loss of the KIAA2022 gene protein results in intellectual disability with language impairment and autistic behavior (KIDLIA, also referred to as XPN). However, the cellular and molecular alterations resulting from a loss of function of KIDLIA and its role in autism with severe intellectual disability remain unknown. Here, we show that KIDLIA plays a key role in neuron migration and morphogenesis. We found that KIDLIA is distributed exclusively in the nucleus. In the developing rat brain, it is expressed only in the cortical plate and subplate region but not in the intermediate or ventricular zone...
September 2016: ENeuro
Haixia Cheng, Jessica Burroughs-Garcia, Jacqueline E Birkness, Jonathan C Trinidad, Michael R Deans
Directed transport delivers proteins to specific cellular locations and is one mechanism by which cells establish and maintain polarized cellular architectures. The atypical cadherin Fat3 directs the polarized extension of dendrites in retinal amacrine cells by influencing the distribution of cytoskeletal regulators during retinal development, however the mechanisms regulating the distribution of Fat3 remain unclear. We report a novel Kinesin/Kif5 Interaction domain (Kif5-ID) in Fat3 that facilitates Kif5B binding, and determines the distribution of Fat3 cytosolic domain constructs in neurons and MDCK cells...
2016: PloS One
Hideko Azuma, Eri Watanabe, Yohei Otsuka, Yasuyuki Negishi, Sadayuki Ohkura, Eiji Shinya, Hidemi Takahashi
Langerhans cells (LCs), a subset of dendritic cells (DCs), reside in body surface presenting antigens from various pathogens and activate immune system after migrating to vicinal lymph nodes. We recently demonstrated that the E-cadherin interaction allowed peripheral blood (PB) CD14(+) cells to differentiate into LC-like cells that closely resemble primary LCs. Here, with a combination of GM-CSF, TGF-β, and TNF-α, we induced LC-like cells from umbilical cord blood (UCB)derived CD34(+) cells and compared them with those induced from PB CD14(+) cells...
2016: Biomedical Research
Huanhuan He, Julia J Mack, Esra Güç, Carmen M Warren, Mario Leonardo Squadrito, Witold W Kilarski, Caroline Baer, Ryan D Freshman, Austin I McDonald, Safiyyah Ziyad, Melody A Swartz, Michele De Palma, M Luisa Iruela-Arispe
OBJECTIVE: Perivascular cells, including pericytes, macrophages, smooth muscle cells, and other specialized cell types, like podocytes, participate in various aspects of vascular function. However, aside from the well-established roles of smooth muscle cells and pericytes, the contributions of other vascular-associated cells are poorly understood. Our goal was to ascertain the function of perivascular macrophages in adult tissues under nonpathological conditions. APPROACH AND RESULTS: We combined confocal microscopy, in vivo cell depletion, and in vitro assays to investigate the contribution of perivascular macrophages to vascular function...
November 2016: Arteriosclerosis, Thrombosis, and Vascular Biology
Zhihui Xie, Kathie L Eagleson, Hsiao-Huei Wu, Pat Levitt
MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development...
July 2016: ENeuro
Wei Dong, Aiguo Lu, Jingkun Zhao, Shuai Yin, Baochi Ou, Hao Feng
Co-cultivation of non-parenchymal cells (NPCs) and tumor cells from the same donor is important for metastatic cancer research. This study aimed to optimize a protocol for liver NPC isolation. Two novel 3D organotypic co‑culture models for hepatocyte, endothelial cell (EC) and Kupffer cell (KC) isolation were used. Long‑term cell co‑culture, density gradient centrifugation and magnetic‑activated cell sorting (MACS) were established. ECs were isolated from the co‑culture system; the purity of the ECs was 92±1...
October 2016: Oncology Reports
Pierre-Olivier Girodet, Daniel Nguyen, John Dominic Mancini, Mandeep Hundal, Xiaobo Zhou, Elliot Israel, Manuela Cernadas
The immune responses of type 2 T helper cells (Th2) play an important role in asthma and promote the differentiation of alternatively activated (M2) macrophages. M2 macrophages have been increasingly understood to contribute to Th2 immunity. We hypothesized that M2 macrophages are altered in asthma and modulate Th2 responses. The aim of this study was to characterize the phenotype and function of human monocyte-derived M2 and bronchoalveolar lavage fluid (BALF) macrophages from healthy control subjects and subjects with asthma...
October 2016: American Journal of Respiratory Cell and Molecular Biology
Bhavin Shah, Andreas W Püschel
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo...
October 1, 2016: Biological Chemistry
Yasuna Higashiguchi, Kazuhiro Katsuta, Takunori Minegishi, Shigenobu Yonemura, Akihiro Urasaki, Naoyuki Inagaki
Shootin1 is a brain-specific cytoplasmic protein involved in neuronal polarity formation and axon outgrowth. It accumulates at the leading edge of axonal growth cones, where it mediates the mechanical coupling between F-actin retrograde flow and cell adhesions as a clutch molecule, thereby producing force for axon outgrowth. In this study, we report a novel splicing isoform of shootin1 which is expressed not only in the brain but also in peripheral tissues. We have renamed the brain-specific shootin1 as shootin1a and termed the novel isoform as shootin1b...
October 2016: Cell and Tissue Research
Alexandra Krol, Steven J Henle, Lisa V Goodrich
Neurons exhibit asymmetric morphologies throughout development - from migration to the elaboration of axons and dendrites - that are correctly oriented for the flow of information. For instance, retinal amacrine cells migrate towards the inner plexiform layer (IPL) and then retract their trailing processes, thereby acquiring a unipolar morphology with a single dendritic arbor restricted to the IPL. Here, we provide evidence that the Fat-like cadherin Fat3 acts during multiple stages of amacrine cell development in mice to orient overall changes in cell shape towards the IPL...
June 15, 2016: Development
Gaëlle Picarda, Coraline Chéneau, Jean-Marc Humbert, Gaëlle Bériou, Paul Pilet, Jérôme Martin, Franck Duteille, Pierre Perrot, Frédérique Bellier-Waast, Michèle Heslan, Fabienne Haspot, Fabien Guillon, Regis Josien, Franck Albert Halary
Langerhans cells (LCs) are epithelial APCs that sense danger signals and in turn trigger specific immune responses. In steady-state, they participate in the maintenance of peripheral tolerance to self-antigens whereas under inflammation LCs efficiently trigger immune responses in secondary lymphoid organs. It has been demonstrated in mice that LC-deprived epithelia are rapidly replenished by short half-life langerin-expressing monocyte-derived LCs (MDLCs). These surrogate LCs are thought to be progressively replaced by langerin(high) LCs arising from self-renewing epithelial precursors of hematopoietic origin...
May 1, 2016: Journal of Immunology: Official Journal of the American Association of Immunologists
Tadahiro Nagaoka, Masashi Kishi
The excitatory postsynaptic region of the vertebrate hippocampus is usually compartmentalized into the postsynaptic density (PSD) and N-cadherin-rich domain, which is important for synaptic adhesion. However, the molecular mechanisms underlying the compartment formation are unknown. In the present report, we show that the planar cell polarity (PCP) protein Van Gogh-like 2 (Vangl2) plays a role in this regionalization. In cultured rat hippocampal neurons that were subjected to Vangl2 expression silencing, the formed clusters of PSD-95, one of the major scaffolding proteins in PSD, tended to overlap with those of N-cadherin...
January 26, 2016: Neuroscience Letters
Li Ma, Ying Chen, Xiaoqin Song, Lu Wang, Bing Zhao, Zhitao Yang, Huiqiu Sheng, Jian Fei, Erzhen Chen, En-Qiang Mao
OBJECTIVE: To investigate the roles of epithelial-dendritic cell transformation (EDT) characterized by the expression of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) in the occurrence of tissue inflammation induced by hemorrhagic hypotension (HH), the protective effect of vitamin C (VitC), and the potential mechanisms. METHODS: We conducted an in vitro study using the rat intestinal epithelial cells (IEC-6). After hypoxic culture with or without VitC for 2, 6, 24, and 48 h (n = 3 per group), the expression levels of DC-SIGN, E-cadherin, and Glycogen synthase kinase-3β-S9 (GSK-3β-S9) in IEC-6 cells, IL-1β, and IL-6 concentrations in the cell culture medium were measured...
January 2016: Shock
Li-Min Mao, John Q Wang
Mitogen-activated protein kinases (MAPKs) are expressed in postmitotic neurons and act as important regulators in intracellular signaling. In addition to their nuclear distribution and roles in regulating gene expression, MAPKs, especially the extracellular signal-regulated kinase (ERK) subclass, reside in peripheral dendritic spines and synapses, including the postsynaptic density (PSD) microdomain. This peripheral pool of MAPKs/ERKs is either constitutively active or sensitive to changing synaptic input. Active MAPKs directly interact with and phosphorylate local substrates to alter their trafficking and subcellular/subsynaptic distributions, through which MAPKs regulate function of substrates and contribute to long-lasting synaptic plasticity...
November 2016: Molecular Neurobiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"