Read by QxMD icon Read

Root nodule bacteria

Fernando Ibáñez, Luis Wall, Adriana Fabra
Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules...
October 18, 2016: Journal of Experimental Botany
Hari Bhupathi Krishnan, Alaa Alaswad, Nathan Wayne Oehrle, Jason Gillman
Legumes form symbiotic association with soil-dwelling bacteria collectively called rhizobia. This association results in the formation of nodules, unique plant-derived organs, within which the rhizobia are housed. Rhizobia encoded-nitrogenase facilitates the conversation of atmospheric nitrogen into ammonia, which is utilized by the plants for its growth and development. Fatty acids have been shown to play an important role in root nodule symbiosis. In this study, we have investigated the role of Stearoyl-Acyl Carrier Protein Desaturase- isoform C (SACPD-C), a soybean enzyme that catalyzes the conversion of stearic acid into oleic acid, which is expressed in developing seeds and in nitrogen fixing nodules...
October 17, 2016: Molecular Plant-microbe Interactions: MPMI
Harald Marx, Catherine E Minogue, Dhileepkumar Jayaraman, Alicia L Richards, Nicholas W Kwiecien, Alireza F Sihapirani, Shanmugam Rajasekar, Junko Maeda, Kevin Garcia, Angel R Del Valle-Echevarria, Jeremy D Volkening, Michael S Westphall, Sushmita Roy, Michael R Sussman, Jean-Michel Ané, Joshua J Coon
Legumes are essential components of agricultural systems because they enrich the soil in nitrogen and require little environmentally deleterious fertilizers. A complex symbiotic association between legumes and nitrogen-fixing soil bacteria called rhizobia culminates in the development of root nodules, where rhizobia fix atmospheric nitrogen and transfer it to their plant host. Here we describe a quantitative proteomic atlas of the model legume Medicago truncatula and its rhizobial symbiont Sinorhizobium meliloti, which includes more than 23,000 proteins, 20,000 phosphorylation sites, and 700 lysine acetylation sites...
October 17, 2016: Nature Biotechnology
Hiroko Akiyama, Yuko Takada Hoshino, Manabu Itakura, Yumi Shimomura, Yong Wang, Akinori Yamamoto, Kanako Tago, Yasuhiro Nakajima, Kiwamu Minamisawa, Masahito Hayatsu
Agricultural soil is the largest source of nitrous oxide (N2O), a greenhouse gas. Soybean is an important leguminous crop worldwide. Soybean hosts symbiotic nitrogen-fixing soil bacteria (rhizobia) in root nodules. In soybean ecosystems, N2O emissions often increase during decomposition of the root nodules. Our previous study showed that N2O reductase can be used to mitigate N2O emission from soybean fields during nodule decomposition by inoculation with nosZ++ strains [mutants with increased N2O reductase (N2OR) activity] of Bradyrhizobium diazoefficiens...
2016: Scientific Reports
Kamila Rachwał, Aleksandra Boguszewska, Joanna Kopcińska, Magdalena Karaś, Marek Tchórzewski, Monika Janczarek
Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism...
2016: Frontiers in Microbiology
Humberto Peralta, Alejandro Aguilar, Rafael Díaz, Yolanda Mora, Gabriel Martínez-Batallar, Emmanuel Salazar, Carmen Vargas-Lagunas, Esperanza Martínez, Sergio Encarnación, Lourdes Girard, Jaime Mora
BACKGROUND: Rhizobia are soil bacteria that establish symbiotic relationships with legumes and fix nitrogen in root nodules. We recently reported that several nitrogen-fixing rhizobial strains, belonging to Rhizobium phaseoli, R. trifolii, R. grahamii and Sinorhizobium americanum, were able to colonize Phaseolus vulgaris (common bean) seeds. To gain further insight into the traits that support this ability, we analyzed the genomic sequences and proteomes of R. phaseoli (CCGM1) and S. americanum (CCGM7) strains from seeds and compared them with those of the closely related strains CIAT652 and CFNEI73, respectively, isolated only from nodules...
2016: BMC Genomics
Adrian F Powell, Jeff J Doyle
PREMISE OF THE STUDY: Previous studies have shown that polyploidy can alter biotic interactions, and it has been suggested that these effects may contribute to the increased ability for colonization of new habitats shown by many allopolyploids. Little is known, however, about the effects of allopolyploidy, which combines hybridity and genome doubling, on symbiotic interactions with rhizobial bacteria. METHODS: We examined interactions of the allopolyploid Glycine dolichocarpa (designated T2) with novel rhizobial partners, such as might occur in a context of colonization, and compared these with the responses of its diploid progenitors, G...
August 25, 2016: American Journal of Botany
Yue Jin, Huan Liu, Dexian Luo, Nan Yu, Wentao Dong, Chao Wang, Xiaowei Zhang, Huiling Dai, Jun Yang, Ertao Wang
Legumes form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. Formation of these two symbioses is regulated by a common set of signalling components that act downstream of recognition of rhizobia or mycorrhizae by host plants. Central to these pathways is the calcium and calmodulin-dependent protein kinase (CCaMK)-IPD3 complex which initiates nodule organogenesis following calcium oscillations in the host nucleus. However, downstream signalling events are not fully understood...
2016: Nature Communications
Jason J Terpolilli, Shyam K Masakapalli, Ramakrishnan Karunakaran, Isabel U C Webb, Rob Green, Nicholas J Watmough, Nicholas J Kruger, R George Ratcliffe, Philip S Poole
UNLABELLED: Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2 Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [(13)C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions...
October 15, 2016: Journal of Bacteriology
Manel Chiboub, Omar Saadani, Imen Challougui Fatnassi, Souhir Abdelkrim, Ghassen Abid, Moez Jebara, Salwa Harzalli Jebara
The inoculation of plants with plant-growth-promoting rhizobacteria has become a priority in the phytoremediation of heavy-metal-contaminated soils. A total of 82 bacteria were isolated from Sulla coronaria root nodules cultivated on four soil samples differently contaminated by heavy metals. The phenotypic characterization of these isolates demonstrated an increased tolerance to cadmium reaching 4.1mM, and to other metals, including Zn, Cu and Ni. Polymerase Chain Reaction/Restriction Fragment Length Polymorphism (PCR/RFLP) analysis showed a large diversity represented by genera related to Agrobacterium sp...
September 2016: Comptes Rendus Biologies
Abeer Hashem, Elsayed F Abd Allah, Abdulaziz A Alqarawi, Asma A Al-Huqail, Stephan Wirth, Dilfuza Egamberdieva
Microbes living symbiotically in plant tissues mutually cooperate with each other by providing nutrients for proliferation of the partner organism and have a beneficial effect on plant growth. However, few studies thus far have examined the interactive effect of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) in hostile conditions and their potential to improve plant stress tolerance. In this study, we investigated how the synergistic interactions of endophytic bacteria and AMF affect plant growth, nodulation, nutrient acquisition and stress tolerance of Acacia gerrardii under salt stress...
2016: Frontiers in Microbiology
N A Provorov, E E Andronov
The processes of speciation and macroevolution of root nodule bacteria (rhizobia), based on deep rearrangements of their genomes and occurring in the N₂-fixing symbiotic system, are reconstructed. At the first stage of rhizobial evolution, transformation of free-living diazotrophs (related to Rhodopseudomonas) to symbiotic N₂-fixers (Bradyrhizobium) occurred due to the acquisition of the fix gene system, which is responsible for providing nitrogenase with electrons and reducing equivalents, as well as for oxygen-dependent regulation of nitrogenase synthesis in planta, and then of the nod genes responsible for the synthesis of the lipo- chito-oligosaccharide Nod factors, which induce root nodule development...
March 2016: Mikrobiologiia
Alexandre C Barauna, Luc M F Rouws, Jean L Simoes-Araujo, Fabio B Dos Reis Junior, Pietro P M Iannetta, Marta Maluk, Silvia R Goi, Veronica M Reis, Euan K James, Jerri E Zilli
Root nodule bacteria were isolated from nodules on Mimosa pudica L. growing in neutral-alkaline soils from the Distrito Federal in Central Brazil. The 16S rRNA gene sequence analysis of ten strains placed them into the genus Rhizobium with the closest neighbouring species (each with 99% similarity) being R. grahamii, R. cauense, R. mesoamericanum and R. tibeticum. This high similarity, however, was not confirmed by multi locus sequence analysis (MLSA) using three housekeeping genes (recA, glnII and rpoB), which revealed R...
July 21, 2016: International Journal of Systematic and Evolutionary Microbiology
Michiko Yasuda, Hiroki Miwa, Sachiko Masuda, Yumiko Takebayashi, Hitoshi Sakakibara, Shin Okazaki
Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean...
August 2016: Plant & Cell Physiology
Hukam Singh Gehlot, Julie Ardley, Nisha Tak, Rui Tian, Neetu Poonar, Raju R Meghwal, Sonam Rathi, Ravi Tiwari, Wan Adnawani, Rekha Seshadri, T B K Reddy, Amrita Pati, Tanja Woyke, Manoj Pillay, Victor Markowitz, Mohammed N Baeshen, Ahmed M Al-Hejin, Natalia Ivanova, Nikos Kyrpides, Wayne Reeve
Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs...
2016: Standards in Genomic Sciences
Kelsey A Gano-Cohen, Peter J Stokes, Mia A Blanton, Camille E Wendlandt, Amanda C Hollowell, John U Regus, Deborah Kim, Seema Patel, Victor J Pahua, Joel L Sachs
UNLABELLED: Rhizobia are best known for nodulating legume roots and fixing atmospheric nitrogen for the host in exchange for photosynthates. However, the majority of the diverse strains of rhizobia do not form nodules on legumes, often because they lack key loci that are needed to induce nodulation. Nonnodulating rhizobia are robust heterotrophs that can persist in bulk soil, thrive in the rhizosphere, or colonize roots as endophytes, but their role in the legume-rhizobium mutualism remains unclear...
September 1, 2016: Applied and Environmental Microbiology
Shohei Hayashi, Tomoki Sano, Kousuke Suyama, Kazuhito Itoh
Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B...
July 2016: Microbiological Research
Dhaoui Sami, Rejili Mokhtar, Mergaert Peter, Mars Mohamed
A total of 142 rhizobial bacteria were isolated from root nodules of Lens culinaris Medik endemic to Tunisia and they belonged to the species Rhizobium leguminosarum, and for the first time to Ensifer and Mesorhizobium, genera never previously described as microsymbionts of lentil. Phenotypically, our results indicate that L. culinaris Medik strains showed heterogenic responses to the different phenotypic features and they effectively nodulated their original host. Based on the concatenation of the 16S rRNA with relevant housekeeping genes (glnA, recA, dnaK), rhizobia that nodulate lentil belonged almost exclusively to the known R...
August 2016: FEMS Microbiology Ecology
Agustín Reyes-Pérez, María Del Carmen Vargas, Magdalena Hernández, Eneas Aguirre-von-Wobeser, Ernesto Pérez-Rueda, Sergio Encarnacion
Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of R. etli CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of ~8...
November 2016: Archives of Microbiology
Ajay M Sorty, Kamlesh K Meena, Khushboo Choudhary, Utkarsh M Bitla, P S Minhas, K K Krishnani
Halotolerant bacteria associated with Psoralea corylifolia L., a luxuriantly growing annual weed in salinity-affected semi-arid regions of western Maharashtra, India were evaluated for their plant growth-promoting activity in wheat. A total of 79 bacteria associated with different parts viz., root, shoot and nodule endophytes, rhizosphere, rhizoplane, and leaf epiphytes, were isolated and grouped based on their habitat. Twelve bacteria isolated for their potential in plant growth promotion were further selected for in vitro studies...
May 23, 2016: Applied Biochemistry and Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"