Read by QxMD icon Read

histone chaperone

Takashi Onikubo, David Shechter
Chromatin is the complex of DNA and histone proteins that is the physiological form of the eukaryotic genome. Chromatin is generally repressive for transcription, especially so during early metazoan development when maternal factors are explicitly in control of new zygotic gene expression. In the important model organism Xenopus laevis, maturing oocytes are transcriptionally active with reduced rates of chromatin assembly, while laid eggs and fertilized embryos have robust rates of chromatin assembly and are transcriptionally repressed...
2016: International Journal of Developmental Biology
Vasily M Studitsky, Ekaterina V Nizovtseva, Alexey K Shaytan, Donal S Luse
Packaging of DNA into chromatin affects all processes on DNA. Nucleosomes present a strong barrier to transcription, raising important questions about the nature and the mechanisms of overcoming the barrier. Recently it was shown that DNA sequence, DNA-histone interactions and backtracking by RNA polymerase II (Pol II) all contribute to formation of the barrier. After partial uncoiling of nucleosomal DNA from histone octamer by Pol II and backtracking of the enzyme, nucleosomal DNA recoils on the octamer, locking Pol II in the arrested state...
2016: Biochemistry & Molecular Biology Journal
Pradyut K Paul, Mary E Rabaglia, Chen-Yu Wang, Donald S Stapleton, Ning Leng, Christina Kendziorski, Peter W Lewis, Mark P Keller, Alan D Attie
Anti-silencing function 1 (ASF1) is a histone H3-H4 chaperone involved in DNA replication and repair, and transcriptional regulation. Here, we identify ASF1B, the mammalian paralog to ASF1, as a proliferation-inducing histone chaperone in human β-cells. Overexpression of ASF1B led to distinct transcriptional signatures consistent with increased cellular proliferation and reduced cellular death. Using multiple methods of monitoring proliferation and mitotic progression, we show that overexpression of ASF1B is sufficient to induce human β-cell proliferation...
October 18, 2016: Cell Cycle
Pei Zhang, Owen E Branson, Michael A Freitas, Mark R Parthun
BACKGROUND: There are 11 variants of linker histone H1 in mammalian cells. Beyond their shared abilities to stabilize and condense chromatin, the H1 variants have been found to have non-redundant functions, the mechanisms of which are not fully understood. Like core histones, there are both replication-dependent and replication-independent linker histone variants. The histone chaperones and other factors that regulate linker histone dynamics in the cell are largely unknown. In particular, it is not known whether replication-dependent and replication-independent linker histones interact with distinct or common sets of proteins...
October 1, 2016: BMC Biochemistry
Makoto Isono, Akinori Sato, Kazuki Okubo, Takako Asano, Tomohiko Asano
The histone deacetylase (HDAC) inhibitor belinostat increases the amount of unfolded proteins in cells by promoting the acetylation of heat shock protein 90 (HSP90), thereby disrupting its chaperone function. The human immunodeficiency virus protease inhibitor ritonavir, on the other hand, not only increases unfolded proteins by suppressing HSP90 but also acts as a proteasome inhibitor. We thought that belinostat and ritonavir together would induce endoplasmic reticulum (ER) stress and kill renal cancer cells effectively...
2016: Oncology Research
Yoichi Imai, Eri Ohta, Shu Takeda, Satoko Sunamura, Mariko Ishibashi, Hideto Tamura, Yan-Hua Wang, Atsuko Deguchi, Junji Tanaka, Yoshiro Maru, Toshiko Motoji
Multiple myeloma (MM) is a relapsed and refractory disease, one that highlights the need for developing new molecular therapies for overcoming of drug resistance. Addition of panobinostat, a histone deacetylase (HDAC) inhibitor, to bortezomib and dexamethasone improved progression-free survival (PFS) in relapsed and refractory MM patients. Here, we demonstrate how calcineurin, when inhibited by immunosuppressive drugs like FK506, is involved in myeloma cell growth and targeted by panobinostat. mRNA expression of PPP3CA, a catalytic subunit of calcineurin, was high in advanced patients...
April 21, 2016: JCI Insight
Wallace H Liu, Sarah C Roemer, Yeyun Zhou, Zih-Jie Shen, Briana K Dennehey, Jeremy L Balsbaugh, Jennifer C Liddle, Travis Nemkov, Natalie G Ahn, Kirk C Hansen, Jessica K Tyler, Mair Ea Churchill
The histone chaperone Chromatin Assembly Factor 1 (CAF-1) deposits tetrameric (H3/H4)2 histones onto newly-synthesized DNA during DNA replication. To understand the mechanism of the tri-subunit CAF-1 complex in this process, we investigated the protein-protein interactions within the CAF-1-H3/H4 architecture using biophysical and biochemical approaches. Hydrogen/deuterium exchange and chemical cross-linking coupled to mass spectrometry reveal interactions that are essential for CAF-1 function in budding yeast, and importantly indicate that the Cac1 subunit functions as a scaffold within the CAF-1-H3/H4 complex...
September 30, 2016: ELife
Lei Fang, Danqi Chen, Clinton Yu, Hongjie Li, Jason Brocato, Lan Huang, Chunyuan Jin
Acrolein is a major component of cigarette smoke and cooking fumes. Previously, we reported that acrolein compromises chromatin assembly; however, underlying mechanisms have not been defined. Here, we report that acrolein reacts with lysine residues including lysines 5 and 12 on histone H4 in vitro and in vivo, sites important for chromatin assembly. Acrolein-modified histones are resistant to acetylation, suggesting that the reduced H4K12 acetylation following acrolein exposure is likely due to the formation of acrolein-histone lysine adducts...
September 26, 2016: Molecular and Cellular Biology
Wei Li, Ping Chen, Juan Yu, Liping Dong, Dan Liang, Jianxun Feng, Jie Yan, Peng-Ye Wang, Qing Li, Zhiguo Zhang, Ming Li, Guohong Li
In eukaryotes, the packaging of genomic DNA into chromatin plays a critical role in gene regulation. However, the dynamic organization of chromatin fibers and its regulatory mechanisms remain poorly understood. Using single-molecule force spectroscopy, we reveal that the tetranucleosomes-on-a-string appears as a stable secondary structure during hierarchical organization of chromatin fibers. The stability of the tetranucleosomal unit is attenuated by histone chaperone FACT (facilitates chromatin transcription) in vitro...
October 6, 2016: Molecular Cell
Brandon Wyse, Roxanne Oshidari, Hollie Rowlands, Sanna Abbasi, Krassimir Yankulov
Chromatin structures are transmitted to daughter cells through a complex system of nucleosome disassembly and re-assembly at the advancing replication forks. However, the role of replication pausing in the transmission and perturbation of chromatin structures has not been addressed. RRM3 encodes a DNA helicase, which facilitates replication at sites covered with non-histone protein complexes (tRNA genes, active gene promoters, telomeres) in Saccharomyces cerevisiae. In this report we show that the deletion of RRM3 reduces the frequency of epigenetic conversions in the subtelomeric regions of the chromosomes...
July 3, 2016: Nucleus
Matej Horvath, Zorana Mihajlovic, Vera Slaninova, Raquel Perez Gomez, Yuri Moshkin, Alena Krejci
The silent information regulator 1 (Sirt1) has previously been shown to have negative effects on the Notch pathway in several contexts. We bring evidence that Sirt1 has a positive effect on Notch activation in Drosophila, in the context of sensory organ precursor specification and during wing development. The phenotype of Sirt1 mutant resembles weak Notch loss of function phenotypes and genetic interactions of Sirt1 with the components of the Notch pathway also suggest a positive role of Sirt1 in Notch signalling...
September 13, 2016: Biochemical Journal
Masaru Kato, Caroline Ospelt, Christoph Kolling, Tomohiro Shimizu, Michihito Kono, Shinsuke Yasuda, Beat A Michel, Renate E Gay, Steffen Gay, Kerstin Klein, Tatsuya Atsumi
Valosin containing protein (p97) is a chaperone implicated in a large number of biological processes including endoplasmic reticulum (ER)-associated protein degradation and autophagy. Silencing of p97 in rheumatoid arthritis (RA) synovial fibroblasts (RASFs) increased the amount of polyubiquitinated proteins, whereas silencing of its interaction partner histone deacetylase 6 (HDAC6) had no effect. Furthermore, silencing of p97 in RASFs increased not only rates of apoptotic cell death induced by TRAIL but also induced an autophagy-associated cell death during ER stress that was accompanied by the formation of polyubiquitinated protein aggregates and large vacuoles...
September 7, 2016: Oncotarget
Mengying Zhang, Hejun Liu, Yongxiang Gao, Zhongliang Zhu, Zijun Chen, Peiyi Zheng, Lu Xue, Jixi Li, Maikun Teng, Liwen Niu
Histone chaperones are critical for guiding specific post-transcriptional modifications of histones, safeguarding the histone deposition (or disassociation) of nucleosome (dis)assembly, and regulating chromatin structures to change gene activities. HAT1-interacting factor 1 (Hif1) has been reported to be an H3-H4 chaperone and to be involved in telomeric silencing and nucleosome (dis)assembly. However, the structural basis for the interaction of Hif1 with histones remains unknown. Here, we report the complex structure of Hif1 binding to H2A-H2B for uncovering the chaperone specificities of Hif1 on binding to both the H2A-H2B dimer and the H3-H4 tetramer...
October 4, 2016: Structure
Zhaolong Liu, Le Yang, Yanxiang Sun, Xiaofeng Xie, Jianping Huang
ASF1a (anti-silencing function 1a), an evolutionarily conserved protein and a histone chaperone, is required for a variety of chromatin-mediated cellular processes. However, the function of ASF1a in innate immune response remains unclear. Here, we find that ASF1a is induced in Vesicular Stomatitis Virus (VSV)-infected macrophages in a manner that is dependent on IRF3 signal. ASF1a promotes VSV-triggered IFN-β production. Moreover, acetylation of H3K56 increases at the ifnb promoter after VSV infection, which is dependent on ASF1a...
October 2016: Molecular Immunology
Hongda Huang, Zhong Deng, Olga Vladimirova, Andreas Wiedmer, Fang Lu, Paul M Lieberman, Dinshaw J Patel
The histone H3.3 chaperone DAXX is implicated in formation of heterochromatin and transcription silencing, especially for newly infecting DNA virus genomes entering the nucleus. Epstein-Barr virus (EBV) can efficiently establish stable latent infection as a chromatinized episome in the nucleus of infected cells. The EBV tegument BNRF1 is a DAXX-interacting protein required for the establishment of selective viral gene expression during latency. Here we report the structure of BNRF1 DAXX-interaction domain (DID) in complex with DAXX histone-binding domain (HBD) and histones H3...
2016: Nature Communications
Cheng-Hui Tsai, Yun-Ju Chen, Chia-Jung Yu, Shiou-Ru Tzeng, I-Chen Wu, Wen-Hung Kuo, Ming-Chieh Lin, Nei-Li Chan, Kou-Juey Wu, Shu-Chun Teng
SMYD3 methyltransferase is nearly undetectable in normal human tissues but highly expressed in several cancers, including breast cancer, although its contributions to pathogenesis in this setting are unclear. Here we report that histone H2A.Z.1 is a substrate of SMYD3 that supports malignancy. SMYD3-mediated dimethylation of H2A.Z.1 at lysine 101 (H2A.Z.1K101me2) increased stability by preventing binding to the removal chaperone ANP32E and facilitating its interaction with histone H3. Moreover, a microarray analysis identified cyclin A1 as a target coregulated by SMYD3 and H2A...
October 15, 2016: Cancer Research
Noelia Fernández-Rivero, Aitor Franco, Adrian Velázquez-Campoy, Edurne Alonso, Arturo Muga, Adelina Prado
Nucleoplasmin (NP) is an abundant histone chaperone in vertebrate oocytes and embryos involved in storing and releasing maternal histones to establish and maintain the zygotic epigenome. NP has been considered a H2A-H2B histone chaperone, and recently it has been shown that it can also interact with H3-H4. However, its interaction with different types of histones has not been quantitatively studied so far. We show here that NP binds H2A-H2B, H3-H4 and linker histones with Kd values in the subnanomolar range, forming different complexes...
2016: Scientific Reports
Yoichi Imai, Yoshiro Maru, Junji Tanaka
Histone deacetylases (HDACs) critically regulate gene expression by determining the acetylation status of histones. In addition, studies have increasingly focused on the activities of HDACs, especially involving non-histone proteins, and their various biological effects. Aberrant HDAC expression observed in several kinds of human tumors makes HDACs potential targets for cancer treatment. Several preclinical studies have suggested that HDAC inhibitors exhibit some efficacy in the treatment of acute myelogenous leukemia (AML) with AML1-ETO, which mediates transcriptional repression through its interaction with a complex including HDAC1...
August 24, 2016: Cancer Science
Mitsuru Okuwaki, Mayumi Abe, Miharu Hisaoka, Kyosuke Nagata
Linker histones play important roles in the genomic organization of mammalian cells. Of the linker histone variants, H1.X shows the most dynamic behavior in the nucleus. Recent research has suggested that the linker histone variants H1.X and H1.0 have different chromosomal binding site preferences. However, it remains unclear how the dynamics and binding site preferences of linker histones are determined. Here, we biochemically demonstrated that the DNA/nucleosome and histone chaperone binding activities of H1...
November 1, 2016: Molecular and Cellular Biology
Michael Soniat, Tolga Cağatay, Yuh Min Chook
N-terminal tails of histones H3 and H4 are known to bind several different Importins to import the histones into the cell nucleus. However, it is not known what binding elements in the histone tails are recognized by the individual Importins. Biochemical studies of H3 and H4 tails binding to seven Importins, Impβ, Kapβ2, Imp4, Imp5, Imp7, Imp9, and Impα, show the H3 tail binding more tightly than the H4 tail. The H3 tail binds Kapβ2 and Imp5 with KD values of 77 and 57 nm, respectively, and binds the other five Importins more weakly...
September 30, 2016: Journal of Biological Chemistry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"