Read by QxMD icon Read

mouse motor cortex

Yasuyuki Osanai, Takeshi Shimizu, Takuma Mori, Yumiko Yoshimura, Nobuhiko Hatanaka, Atsushi Nambu, Yoshitaka Kimori, Shinsuke Koyama, Kenta Kobayashi, Kazuhiro Ikenaka
Oligodendrocytes myelinate neuronal axons during development and increase conduction velocity of neuronal impulses in the central nervous system. Neuronal axons extend from multiple brain regions and pass through the white matter; however, whether oligodendrocytes ensheath a particular set of axons or do so randomly within the mammalian brain remains unclear. We developed a novel method to visualize individual oligodendrocytes and axon derived from a particular brain region in mouse white matter using a combinational injection of attenuated rabies virus and adeno-associated virus...
October 19, 2016: Glia
Siyu Zhang, Min Xu, Wei-Cheng Chang, Chenyan Ma, Johnny Phong Hoang Do, Daniel Jeong, Tiffany Lei, Jiang Lan Fan, Yang Dan
Long-range projections from the frontal cortex are known to modulate sensory processing in multiple modalities. Although the mouse has become an increasingly important animal model for studying the circuit basis of behavior, the functional organization of its frontal cortical long-range connectivity remains poorly characterized. Here we used virus-assisted circuit mapping to identify the brain networks for top-down modulation of visual, somatosensory and auditory processing. The visual cortex is reciprocally connected to the anterior cingulate area, whereas the somatosensory and auditory cortices are connected to the primary and secondary motor cortices...
October 17, 2016: Nature Neuroscience
Laura M J Fernandez, Jean-Christophe Comte, Pierre Le Merre, Jian-Sheng Lin, Paul-A Salin, Sylvain Crochet
Although low-frequency (LF < 10 Hz) activities have been considered as a hallmark of nonrapid eye movement (NREM) sleep, several studies have recently reported LF activities in the membrane potential of cortical neurons from different areas in awake mice. However, little is known about the spatiotemporal organization of LF activities across cortical areas during wakefulness and to what extent it differs during NREM sleep. We have thus investigated the dynamics of LF activities across cortical areas in awake and sleeping mice using chronic simultaneous local field potential recordings...
October 14, 2016: Cerebral Cortex
Bao-Hua Liu, Andrew D Huberman, Massimo Scanziani
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision...
October 12, 2016: Nature
Mauricio P Cunha, Francis L Pazini, Vicente Lieberknecht, Josiane Budni, Ágatha Oliveira, Júlia M Rosa, Gianni Mancini, Leidiane Mazzardo, André R Colla, Marina C Leite, Adair R S Santos, Daniel F Martins, Andreza F de Bem, Carlos Alberto S Gonçalves, Marcelo Farina, Ana Lúcia S Rodrigues
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces motor and nonmotor dysfunctions resembling Parkinson's disease (PD); however, studies investigating the effects of 1-methyl-4-phenylpyridinium (MPP(+)), an active oxidative product of MPTP, are scarce. This study investigated the behavioral and striatal neurochemical changes (related to oxidative damage, glial markers, and neurotrophic factors) 24 h after intracerebroventricular administration of MPP(+) (1.8-18 μg/mouse) in C57BL6 mice...
October 8, 2016: Molecular Neurobiology
D A Amodeo, E Rivera, E H Cook, J A Sweeney, M E Ragozzino
Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT2A receptor activity is altered in autism, while recent work indicates that systemic 5HT2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT2A receptors are expressed in the orbitofrontal cortex and striatum...
September 22, 2016: Genes, Brain, and Behavior
Fiona C A Geraerts, Russell G Snell, Richard L M Faull, Liam Williams, Jessie C Jacobsen, Suzanne J Reid
Huntington's disease is caused by expansion of the CAG repeat in Huntingtin. This repeat has shown tissue-specific instability in mouse models and in a small number of post-mortem human samples. We used small-pool PCR to generate a modified instability index to quantify CAG instability within two brain regions from six human samples where cell loss has been associated with motor and mood symptoms: the motor cortex and cingulate gyrus. The expanded allele demonstrated instability in both regions, with minimal instability in the unexpanded allele...
October 1, 2016: Journal of Huntington's Disease
Neha Khetan, Chaitanya A Athale
Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics...
October 2016: PLoS Computational Biology
Su Jiang, Ya-Feng Liu, Xiao-Min Wang, Ke-Fei Liu, Ding-Hong Zhang, Yi-Ding Li, Ai-Ping Yu, Xiao-Hui Zhang, Jia-Yi Zhang, Jian-Guang Xu, Yu-Dong Gu, Wen-Dong Xu, Shao-Qun Zeng
We introduce a more flexible optogenetics-based mapping system attached on a stereo microscope, which offers automatic light stimulation to individual regions of interest in the cortex that expresses light-activated channelrhodopsin-2 in vivo. Combining simultaneous recording of electromyography from specific forelimb muscles, we demonstrate that this system offers much better efficiency and precision in mapping distinct domains for controlling limb muscles in the mouse motor cortex. Furthermore, the compact and modular design of the system also yields a simple and flexible implementation to different commercial stereo microscopes, and thus could be widely used among laboratories...
September 1, 2016: Biomedical Optics Express
Najet Serradj, John H Martin
Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb constraint during development to expand our understanding of experience-dependent CST development from both basic and translational perspectives...
2016: PloS One
Ramon Reig, Gilad Silberberg
Individual striatal neurons integrate somatosensory information from both sides of the body, however, the afferent pathways mediating these bilateral responses are unclear. Whereas ipsilateral corticostriatal projections are prevalent throughout the neocortex, contralateral projections provide sparse input from primary sensory cortices, in contrast to the dense innervation from motor and frontal regions. There is, therefore, an apparent discrepancy between the observed anatomical pathways and the recorded striatal responses...
September 24, 2016: Cerebral Cortex
Abhishek Desai, Taeyeop Park, Jaquel Barnes, Karl Kevala, Huazhen Chen, Hee-Yong Kim
BACKGROUND: Adequate consumption of polyunsaturated fatty acids (PUFA) is vital for normal development and functioning of the central nervous system. The long-chain n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid are anti-inflammatory and neuroprotective in the models of central nervous system injury including traumatic brain injury (TBI). In the present study, we tested whether a higher brain DHA status in a mouse model on an adequate dietary α-linolenic acid (ALA) leads to reduced neuroinflammation and improved spontaneous recovery after TBI in comparison to a moderately lowered brain DHA status that can occur in humans...
2016: Journal of Neuroinflammation
Yamila Rodríguez Cruz, Manon Strehaiano, Teresita Rodríguez Obaya, Julío César García Rodríguez, Tangui Maurice
Erythropoietin (EPO) is a cytokine known to have effective cytoprotective action in the brain, particularly in ischemic, traumatic, inflammatory, and neurodegenerative conditions. We previously reported the neuroprotective effect of a low sialic form of EPO, Neuro-EPO, applied intranasally in rodent models of stroke or cerebellar ataxia and in a non-transgenic mouse model of Alzheimer's disease (AD). Here we analyzed the protective effect of Neuro-EPO in APPSwe mice, a reference transgenic mouse model of AD...
September 20, 2016: Journal of Alzheimer's Disease: JAD
Shan-Shan Guo, Xiao-Fang Gao, Yan-Rong Gu, Zhong-Xiao Wan, A-Ming Lu, Zheng-Hong Qin, Li Luo
Maca has been used as a foodstuff and a traditional medicine in the Andean region for over 2,000 years. Recently the neuroprotective effects of maca also arouse interest of researchers. Decrease in mitochondrial function and decline in autophagy signaling may participate in the process of age-related cognitive decline. This study aimed to investigate if maca could improve cognitive function of middle-aged mice and if this effect was associated with improvement of mitochondrial activity and modulation of autophagy signaling in mouse cortex...
2016: Evidence-based Complementary and Alternative Medicine: ECAM
Chanyi Lu, Yun Wang, Yun-Feng Zhang
Light sensory experience plays a crucial role in the regulation of mood, and light deficiency is considered as one important factor potentially leading to depression. Women are twice as likely as men to suffer from depression. However, the physiological mechanism underlying sex differences in the prevalence, incidence and morbidity risk of depression is still poorly understood. The potential causal relationship between sex dimorphic behavioral deficits and altered intrinsic electrophysiological properties of Layer V pyramidal cells (L5PCs) in the motor cortex was investigated using a mouse model with depression-like behavior that was induced by light deprivation...
October 28, 2016: Neuroscience Letters
Gajendra Kumar, Ngan Pan Bennett Au, Elva Ngai Yu Lei, Yim Ling Mak, Leanne Lai Hang Chan, Michael Hon Wah Lam, Leo Lai Chan, Paul Kwan Sing Lam, Chi Him Eddie Ma
Ciguatera fish poisoning (CFP) is a common human food poisoning caused by consumption of ciguatoxin (CTX)-contaminated fish affecting over 50,000 people worldwide each year. CTXs are classified depending on their origin from the Pacific (P-CTXs), Indian Ocean (I-CTXs), and Caribbean (C-CTXs). P-CTX-1 is the most toxic CTX known and the major source of CFP causing an array of neurological symptoms. Neurological symptoms in some CFP patients last for several months or years; however, the underlying electrophysiological properties of acute exposure to CTXs remain unknown...
September 10, 2016: Molecular Neurobiology
Jong Heon Kim, Sung-Hoon Kim, Sung-Rae Cho, Ji Yong Lee, Ji Hyun Kim, Ahreum Baek, Hong Sun Jung
OBJECTIVE: To investigate alterations in the expression of the main regulators of neuronal survival and death related to astrocytes and neuronal cells in the brain in a mouse model of spinal cord injury (SCI). METHODS: Eight-week-old male imprinting control region mice (n=36; 30-35 g) were used in this study and randomly assigned to two groups: the naïve control group (n=18) and SCI group (n=18). The mice in both groups were randomly allocated to the following three time points: 3 days, 1 week, and 2 weeks (n=6 each)...
August 2016: Annals of Rehabilitation Medicine
Naoki Yamawaki, Jelena Radulovic, Gordon M G Shepherd
UNLABELLED: Retrosplenial cortex (RSC) is a dorsomedial parietal area involved in a range of cognitive functions, including episodic memory, navigation, and spatial memory. Anatomically, the RSC receives inputs from dorsal hippocampal networks and in turn projects to medial neocortical areas. A particularly prominent projection extends rostrally to the posterior secondary motor cortex (M2), suggesting a functional corticocortical link from the RSC to M2 and thus a bridge between hippocampal and neocortical networks involved in mnemonic and sensorimotor aspects of navigation...
September 7, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Hussein Gazalah, Sarah Mantash, Naify Ramadan, Sawsan Al Lafi, Sally El Sitt, Hala Darwish, Hassan Azari, Lama Fawaz, Noël Ghanem, Kazem Zibara, Rose-Mary Boustany, Firas Kobeissy, Jihane Soueid
Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits...
2016: Methods in Molecular Biology
César Quiroz, Seema Gulyani, Wan Ruiqian, Jordi Bonaventura, Roy Cutler, Virginia Pearson, Richard P Allen, Christopher J Earley, Mark P Mattson, Sergi Ferré
Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances...
December 2016: Neuropharmacology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"