Read by QxMD icon Read


Xiaomeng Li, Xianhui Ruan, Peitao Zhang, Yang Yu, Ming Gao, Shukai Yuan, Zewei Zhao, Jie Yang, Li Zhao
The T-box transcription factor TBX3 has been implicated in the patterning and differentiation of a number of tissues during embryonic development, and is overexpressed in a variety of cancers; however, the precise function of TBX3 in papillary thyroid carcinoma (PTC) development remains to be determined. In the current study, we report downregulation of TBX3 in PTC cells delays the G1/S-phase transition, decreases cell growth in vitro, and inhibits tumor formation in vivo. We identified p57KIP2 as a novel downstream target that serves as the key mediator of TBX3's control over PTC cell proliferation...
March 7, 2018: Oncogene
Bingqing Cheng, Sishi Tang, Nana Zhe, Dan Ma, Kunlin Yu, Danna Wei, Zheng Zhou, Tingting Lu, Jishi Wang, Qin Fang
To improve the treatment outcomes of acute myeloid leukemia (AML), epigenetic modification has been widely tested and used in recent years. However, drug-resistance is still a choke point to cure the malignancy. The growth factor independent 1 transcriptional repressor (GFI-1), as a zinc-finger transcriptional repressor, can bind histone deacetylases to allow the transcriptional repression. According to the finding of our study, AML patients with low level of GFI-1 not only implicated poor prognosis but also caused Panobinostat-resistance...
February 23, 2018: Biomedicine & Pharmacotherapy, Biomédecine & Pharmacothérapie
Hengyu Zhou, Ying Cai, Dina Liu, Menghui Li, Yu Sha, Wenlu Zhang, Kai Wang, Jianping Gong, Ni Tang, Ailong Huang, Jie Xia
OBJECTIVES: Histone deacetylases (HDACs) are commonly dysregulated in cancer and represent promising therapeutic targets. However, global HDAC inhibitors have shown limited efficacy in the treatment of solid tumours, including hepatocellular carcinoma (HCC). In this study, we investigated the therapeutic effect of selectively inhibiting HDAC1 and 2 in HCC. METHODS: HDAC1 inhibitor Tacedinaline (CI994), HDAC2 inhibitor Santacruzamate A (CAY10683), HDAC1/2 common inhibitor Romidepsin (FK228) and global HDAC inhibitor Vorinostat (SAHA) were used to treat HCC cells...
February 27, 2018: Cell Proliferation
Sin Young Choi, Hae Jin Kee, Li Jin, Yuhee Ryu, Simei Sun, Gwi Ran Kim, Myung Ho Jeong
Histone deacetylase (HDAC) inhibitors are gaining increasing attention as potential therapeutics for cardiovascular diseases as well as cancer. We recently reported that the class II HDAC inhibitor, MC1568, and the phytochemical, gallic acid, lowered high blood pressure in mouse models of hypertension. We hypothesized that class II HDACs may be involved in the regulation of hypertension. The aim of this study was to determine and compare the effects of well-known HDAC inhibitors (TMP269, panobinostat, and MC1568), phytochemicals (gallic acid, sulforaphane, and piceatannol), and anti-hypertensive drugs (losartan, carvedilol, and furosemide) on activities of class IIa HDACs (HDAC4, 5, 7, and 9)...
February 23, 2018: Biomedicine & Pharmacotherapy, Biomédecine & Pharmacothérapie
Renhong Huang, Xiaowei Zhang, Sadia Sophia, Zhijun Min, Xiaojian Liu
Histone deacetylases (HDACs) are involved in multiple physical and pathological processes in classical Hodgkin lymphoma (cHL). The prognostic value of HDACs in cHL patients has not been discussed. The aim of the current study is to investigate the HDAC1, HDAC2, HDAC3, and HDAC11 expressions, and to evaluate the correlation of HDAC1, HDAC2, HDAC3, and HDAC11 expressions with the survival rate in cHL patients. We retrospectively analyzed clinicopathological data of 28 patients who were diagnosed with cHL between August 2002 and March 2010...
February 23, 2018: Anti-cancer Drugs
Anja Göder, Claudia Emmerich, Teodora Nikolova, Nicole Kiweler, Maria Schreiber, Toni Kühl, Diana Imhof, Markus Christmann, Thorsten Heinzel, Günter Schneider, Oliver H Krämer
Checkpoint kinases sense replicative stress to prevent DNA damage. Here we show that the histone deacetylases HDAC1/HDAC2 sustain the phosphorylation of the checkpoint kinases ATM, CHK1 and CHK2, activity of the cell cycle gatekeeper kinases WEE1 and CDK1, and induction of the tumour suppressor p53 in response to stalled DNA replication. Consequently, HDAC inhibition upon replicative stress promotes mitotic catastrophe. Mechanistically, HDAC1 and HDAC2 suppress the expression of PPP2R3A/PR130, a regulatory subunit of the trimeric serine/threonine phosphatase 2 (PP2A)...
February 22, 2018: Nature Communications
Jie Xia, Huabin Hu, Wenjie Xue, Xiang Simon Wang, Song Wu
Histone deacetylase 3 (HDAC3) is a potential target for the treatment of human diseases such as cancers, diabetes, chronic inflammation and neurodegenerative diseases. Previously, we proposed a virtual screening (VS) pipeline named "Hypo1_FRED_SAHA-3" for the discovery of HDAC3 inhibitors (HDAC3Is) and had thoroughly validated it by theoretical calculations. In this study, we attempted to explore its practical utility in a large-scale VS campaign. To this end, we used the VS pipeline to hierarchically screen the Specs chemical library...
December 2018: Journal of Enzyme Inhibition and Medicinal Chemistry
Xueying Li, Jiaqi Jin, Siyuan Yang, Weizhi Xu, Xianbin Meng, Haiteng Deng, Jun Zhan, Shan Gao, Hongquan Zhang
GATA3 is a transcriptional factor involved in the development of multiple organs. Post translational modifications of GATA3 are critical to its function. Here, we report that GATA3 interacts with and is acetylated by the acetyltransferase CBP. Class I deacetylases HDAC1, HDAC2 and HDAC3 deacetylate GATA3. The major acetylated site of GATA3 in lung adenocarcinoma cells was determined at lysine 119 (AcK119). Functionally, GATA3-acetylation mimics K119Q mutant was found to inhibit lung adenocarcinoma cell migration and invasion with concomitant downregulation of EMT-controlling transcriptional factors Slug, Zeb1 and Zeb2...
February 14, 2018: Biochemical and Biophysical Research Communications
Roberta Nicoleta Bogoi, Alicia de Pablo, Eulalia Valencia, Luz Martín-Carbonero, Victoria Moreno, Helem Haydee Vilchez-Rueda, Victor Asensi, Rosa Rodriguez, Victor Toledano, Berta Rodés
Background: Integration of human immunodeficiency virus type 1 (HIV-1) into the host genome causes global disruption of the chromatin environment. The abundance level of various chromatin-modifying enzymes produces these alterations and affects both the provirus and cellular gene expression. Here, we investigated potential changes in enzyme expression and global DNA methylation in chronically infected individuals with HIV-1 and compared these changes with non-HIV infected individuals...
2018: Clinical Epigenetics
Ji-Young Choi, Jun-Hyeok Ko, Sangmee Ahn Jo
Our previous study showed that the level of glutamate carboxypeptidase II (GCPII) protein is regulated by valproic acid, a histone deacetylase (HDAC) inhibitor, through acetylation of lysine residue in the GCPII protein in human astrocytes, U-87MG. The present study further investigated which HDAC subtype is involved in the acetylation of GCPII. The results revealed that GCPII interacted with HDAC1 but not with HDAC2, HDAC3, HDAC4, HDAC5, and HDAC6. Overexpression of catalytic domain (1-56 aa)-deleted HDAC1, which poorly binds to GCPII, enhanced lysine acetylation in GCPII and increased the level of GCPII protein when compared with that of the wild-type HDAC1...
February 12, 2018: Biochemical and Biophysical Research Communications
Laura Mahady, Muhammad Nadeem, Michael Malek-Ahmadi, Kewei Chen, Sylvia E Perez, Elliott J Mufson
Although the frontal cortex plays an important role in cognitive function and undergoes neuronal dysfunction in Alzheimer's disease (AD), the factors driving these cellular alterations remain unknown. Recent studies suggest that alterations in epigenetic regulation play a pivotal role in this process in AD. We evaluated frontal cortex histone deacetylase (HDAC) and sirtuin (SIRT) levels in tissue obtained from subjects with a premortem diagnosis of no-cognitive impairment (NCI), mild cognitive impairment (MCI), mild to moderate AD (mAD), and severe AD (sAD) using quantitative western blotting...
2018: Journal of Alzheimer's Disease: JAD
Shina Liu, Fei Liu, Weina Huang, Lina Gu, Lingjiao Meng, Yingchao Ju, Yunyan Wu, Juan Li, Lihua Liu, Meixiang Sang
Recently, we have reported that the product of Melanoma Antigens Genes (MAGE) family member MAGE-A11 is an independent poor prognostic marker for esophageal squamous cell carcinoma (ESCC). However, the reason how MAGE-A11 is activated in ESCC progression still remains unclear. In the current study, we demonstrated that DNA methylation and the subsequent histone posttranslational modifications play crucial roles in the regulation of MAGE-A11 in ESCC progression. We found that the methylation rate of TFCP2/ZEB1 binding site on MAGE-A11 promoter in ESCC tissues and cells is higher than the normal esophageal epithelial tissues and cells...
January 9, 2018: Oncotarget
Rachel Fellows, Jérémy Denizot, Claudia Stellato, Alessandro Cuomo, Payal Jain, Elena Stoyanova, Szabina Balázsi, Zoltán Hajnády, Anke Liebert, Juri Kazakevych, Hector Blackburn, Renan Oliveira Corrêa, José Luís Fachi, Fabio Takeo Sato, Willian R Ribeiro, Caroline Marcantonio Ferreira, Hélène Perée, Mariangela Spagnuolo, Raphaël Mattiuz, Csaba Matolcsi, Joana Guedes, Jonathan Clark, Marc Veldhoen, Tiziana Bonaldi, Marco Aurélio Ramirez Vinolo, Patrick Varga-Weisz
The recently discovered histone post-translational modification crotonylation connects cellular metabolism to gene regulation. Its regulation and tissue-specific functions are poorly understood. We characterize histone crotonylation in intestinal epithelia and find that histone H3 crotonylation at lysine 18 is a surprisingly abundant modification in the small intestine crypt and colon, and is linked to gene regulation. We show that this modification is highly dynamic and regulated during the cell cycle. We identify class I histone deacetylases, HDAC1, HDAC2, and HDAC3, as major executors of histone decrotonylation...
January 9, 2018: Nature Communications
Yulan Wu, Yi Xu, Xiyao Huang, Danlei Ye, Miaomiao Han, Hui-Li Wang
Lead (Pb) prevails among the environmental hazards against human health. Although increasing evidence highlights the epigenetic roles underlying the Pb-induced neurotoxicity, the exact mechanisms concerning histone acetylation and its causative agents are still at its infancy. In the present study, the roles of histone deacetylases 1 and 2 (HDAC1/2), as well as histone H3 Lys9 acetylation (Ac-H3K9), in Pb-induced neurotoxicity were investigated. Pb was administered to PC12 cells at 10 μM for 24 hours. And Sprague- Dawley rats were chronically exposed to Pb through drinking water containing 250 ppm Pb for 2 months...
January 2, 2018: Toxicological Sciences: An Official Journal of the Society of Toxicology
Svetlana Demyanenko, Maria Neginskaya, Elena Berezhnaya
Histone acetylation and deacetylation are among the most important epigenetic processes that regulate gene expression. Nonselective inhibitors of histone deacetylases (HDAC) can protect brain cells during ischemia and stroke. However, which HDAC isoform is involved in this effect is unknown. Some isoforms of histone deacetylases (HDACs) protect brain cells after ischemia, whereas others can promote their death. Most studies consider early periods (1-24 h) after stroke, whereas little is known on the involvement of HDACs during recovery after stroke...
December 7, 2017: Translational Stroke Research
Rui Xie, Yan Li, Pingwah Tang, Qipeng Yuan
A novel series of 2-aminobenzamides with dithiocarbamate as cap group were designed and synthesized as histone deacetylase (HDAC) inhibitors. Most newly synthesized compounds displayed potent antiproliferative activity against diverse human tumor cell lines. The most potent compounds, M101, M122 and M133 exhibited remarkably enhanced anticancer potency against 6 kinds of cancer cell lines with IC50 values of as low as 0.54-2.49 μM compared with CS055 (2.28∼ >26 μM) and MS275 (0.47-6.74 μM). HDAC isoform selectivity assay indicated that M101, M122 and M133 are HDAC1 and HDAC2 selective inhibitors...
January 1, 2018: European Journal of Medicinal Chemistry
Qingwei Lai, Wantong Du, Jian Wu, Xiao Wang, Xinyu Li, Xuebin Qu, Xiuxiang Wu, Fuxing Dong, Ruiqin Yao, Hongbin Fan
Recently, it is reported that monocarboxylate transporter 1 (MCT1) plays crucial role in oligodendrocyte differentiation and myelination. We found that MCT1 is strongly expressed in oligodendrocyte but weakly expressed in oligodendrocyte precursors (OPCs), and the underlying mechanisms remain elusive. Histone deacetylases (HDACs) activity is required for induction of oligodendrocyte differentiation and maturation. We asked whether HDACs are involved in the regulation of MCT1 expression. This work revealed that the acetylation level of histone H3K9 (H3K9ac) was much higher in mct1 gene ( Slc16a1 ) promoter in OPCs than that in oligodendrocyte...
2017: Frontiers in Molecular Neuroscience
Benjamin Gronier, Helene M Savignac, Mathieu Di Miceli, Sherif M Idriss, George Tzortzis, Daniel Anthony, Philip W J Burnet
We have previously shown that prebiotics (dietary fibres that augment the growth of indigenous beneficial gut bacteria) such as Bimuno™ galacto-oligosaccharides (B-GOS® ), increased N-methyl-D-aspartate (NMDA) receptor levels in the rat brain. The current investigation examined the functional correlates of these changes in B-GOS® -fed rats by measuring cortical neuronal responses to NMDA using in vivo NMDA micro-iontophoresis electrophysiology, and performance in the attentional set-shifting task. Adult male rats were supplemented with B-GOS® in the drinking water 3 weeks prior to in vivo iontophoresis or behavioural testing...
January 2018: European Neuropsychopharmacology: the Journal of the European College of Neuropsychopharmacology
Shabir Ahmad Ganai, Ehsaan Abdullah, Romana Rashid, Mohammad Altaf
Histone deacetylases (HDACs) regulate epigenetic gene expression programs by modulating chromatin architecture and are required for neuronal development. Dysregulation of HDACs and aberrant chromatin acetylation homeostasis have been implicated in various diseases ranging from cancer to neurodegenerative disorders. Histone deacetylase inhibitors (HDACi), the small molecules interfering HDACs have shown enhanced acetylation of the genome and are gaining great attention as potent drugs for treating cancer and neurodegeneration...
2017: Frontiers in Molecular Neuroscience
Neelam Lohani, Nupur Bhargava, Anjana Munshi, Sivaprakash Ramalingam
β-hemoglobin disorders, such as β-thalassemia and sickle cell anemia are among the most prevalent inherited genetic disorders worldwide. These disorders are caused by mutations in the gene encoding hemoglobin-β (HBB), a vital protein found in red blood cells (RBCs) that carries oxygen from lungs to all parts of the human body. As a consequence, there has been an enduring interest in this field in formulating therapeutic strategies for the treatment of these diseases. Currently, there is no cure available for hemoglobin disorders, although, some patients have been treated with bone marrow transplantation, whose scope is limited because of the difficulty in finding a histocompatible donor and also due to transplant-associated clinical complications that can arise during the treatment...
November 20, 2017: Journal of Cellular Physiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"