Read by QxMD icon Read


Tor Skibsted Clemmensen, Niels Ramsing Holm, Hans Eiskjær, Lars Jakobsen, Katrine Berg, Omeed Neghabat, Brian Bridal Løgstrup, Evald Høj Christiansen, Jouke Dijkstra, Christian Juhl Terkelsen, Michael Maeng, Steen Hvitfeldt Poulsen
BACKGROUND: Optical coherence tomography (OCT) enables in-vivo cardiac allograft vasculopathy (CAV) microstructure characterization. Early coronary artery microstructure changes after heart transplantation (HTx) may provide valuable mechanistic information regarding CAV development. Our in this study was to describe and characterize changes in the coronary artery microstructure during the first year after HTx using serial OCT scans. METHODS: Twenty-six patients were enrolled at routine baseline coronary angiography 3 months after HTx...
October 23, 2017: Journal of Heart and Lung Transplantation
Ayda Ghahremani, Jan R Wessel, Kaviraja Udupa, Bogdan Neagu, Ping Zhuang, Utpal Saha, Suneil K Kalia, Mojgan Hodaie, Andres M Lozano, Adam R Aron, Robert Chen
Response control in the forms of stopping and slowing responses is thought to be implemented by a frontal-subcortical network, which includes the subthalamic nucleus (STN). For manual control, stopping is linked to STN beta (13-30 Hz) and slowing responses are linked to lower frequencies (<12 Hz). Whether similar STN oscillatory activities are associated with the control of spoken responses is not clear. We studied 16 patients with STN LFP recordings during manual and vocal stop signal tasks in two experiments...
November 7, 2017: Brain and Language
Djani Skalamera, Vesna Blazek Bregovic, Ivana Antol, Cornelia Bohne, Nikola Basaric
ortho-, meta- and para-Hydroxymethylaniline methyl ethers 3-5-OMe and acetyl derivatives 3-5-OAc were investigated as potential photocages for alcohols and carboxylic acids, respectively. The measurements of photohydrolysis efficiency showed that the decaging from ortho- and meta-derivatives takes place efficiently in aqueous solution, but not for the para-derivatives. Contrary to previous reports, we showthat the meta-derivatives are better photocages for alcohols, whereas ortho-derivatives are better protective groups for carboxylic acids...
November 9, 2017: Journal of Organic Chemistry
Hsin-Yi Kao, Dino Dvořák, EunHye Park, Jana Kenney, Eduard Kelemen, André A Fenton
We used the psychotomimetic phencyclidine (PCP) to investigate the relationships between cognitive behavior, coordinated neural network function and information processing within the hippocampus place cell system. We report in rats that PCP (5mg/kg i.p.) impairs a well-learned hippocampus-dependent place avoidance behavior in rats that requires cognitive control, even when PCP is injected directly into dorsal hippocampus. PCP increases 60-100 Hz medium gamma oscillations in hippocampus CA1 and these increases correlate with the cognitive impairment caused by systemic PCP administration...
November 8, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Shan Yu, Tiago L Ribeiro, Christian Meisel, Samantha Chou, Andrew Mitz, Richard Saunders, Dietmar Plenz
Sensory events, cognitive processing and motor actions correlate with transient changes in neuronal activity. In cortex, these transients form widespread spatiotemporal patterns with largely unknown statistical regularities. Here, we show that activity associated with behavioral events carry the signature of scale-invariant spatiotemporal clusters, neuronal avalanches. Using high-density microelectrode arrays in nonhuman primates, we recorded extracellular unit activity and the local field potential (LFP) in premotor and prefrontal cortex during motor and cognitive tasks...
November 8, 2017: ELife
Jie Wang, Qinqin Ma, Haoyang Liu, Yingqian Wang, Haijing Shen, Xiaoxia Hu, Chao Ma, Quan Yuan, Weihong Tan
Persistent nanophosphors can remain luminescent after excitation ceases; thus, they offer a promising way to avoid background fluorescence interference in bioimaging. In this work, Zn2GeO4:Ga,Mn (ZGO:Ga,Mn) persistent luminescence nanoparticles were developed and they were employed for time-gated imaging of latent fingerprints (LFP). The nanoparticles were functionalized with a carboxyl group and utilized to label LFP through reacting with the amino group in the LFP. Results proved the potent ability of ZGO:Ga,Mn in eliminating background fluorescence to afford highly sensitive LFP imaging...
November 15, 2017: Analytical Chemistry
Xinyu Liu, Kun Zhao, Dongyun Wang, Yanna Ping, Hong Wan
Avian nidopallium caudolaterale (NCL), a functional analogue of mammalian prefrontal cortex, is thought to be participated to goal-directed behavior. However, few studies so far investigated local field potential (LFP) properties within this area. In this study, we recorded the LFP activity from the NCL of six pigeons when they performed a goal-directed decision-making task in a plus-maze. Spectral analysis revealed a significant LFP-power increase in the gamma-band (40-60Hz) during the decision-making process...
November 2, 2017: Brain Research Bulletin
Katrina E Furth, Alex J McCoy, Caroline Dodge, Judith R Walters, Andres Buonanno, Claire Delaville
Alterations in the function of the medial prefrontal cortex (mPFC) and its major thalamic source of innervation, the mediodorsal (MD) thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40-70 Hz) power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP) activity in the rat mPFC and MD thalamus...
2017: PloS One
Mahmood S Hoseini, Jeff Pobst, Nathaniel C Wright, Wesley Clawson, Woodrow Shew, Ralf Wessel
The three-layered visual cortex of turtle is characterized by extensive intracortical axonal projections and receives non-retinotopic axonal projections from lateral geniculate nucleus. What spatiotemporal transformation of visual stimuli into cortical activity arises from such tangle of malleable cortical inputs and intracortical connections? To address this question, we obtained band-pass filtered extracellular recordings of neural activity in turtle dorsal cortex during visual stimulation of the retina. We discovered important spatial and temporal features of stimulus-modulated cortical local field potential (LFP) recordings...
November 1, 2017: Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology
Abdulraheem Nashef, Hannes Rapp, Martin P Nawrot, Yifat Prut
The cerebellar-thalamo-cortical (CTC) system plays a major role in controlling timing and coordination of voluntary movements. However, the functional impact of this system on motor cortical sites has not been documented in a systematic manner. We addressed this question by implanting a chronic stimulating electrode in the superior cerebellar peduncle (SCP) and recording evoked multiunit activity (MUA) and the local field potential (LFP) in the primary motor cortex ([Formula: see text]), the premotor cortex ([Formula: see text]) and the somatosensory cortex ([Formula: see text])...
November 2, 2017: Biological Cybernetics
Phillip R Kramer, Jennifer Strand, Crystal Stinson, Larry L Bellinger, Paul R Kinchington, Michael B Yee, Mikhail Umorin, Yuan B Peng
Varicella zoster virus (VZV) infects the face and can result in chronic, debilitating pain. The mechanism for this pain is unknown and current treatment is often not effective, thus investigations into the pain pathway become vital. Pain itself is multidimensional, consisting of sensory and affective experiences. One of the primary brain substrates for transmitting sensory signals in the face is the ventral posterior medial/posterior lateral thalamus (VPM/VPL). In addition, the anterior cingulate cortex (ACC) has been shown to be vital in the affective experience of pain, so investigating both of these areas in freely behaving animals was completed to address the role of the brain in VZV-induced pain...
2017: Frontiers in Integrative Neuroscience
Jigang Zhou, Jian Wang, Yongfeng Hu, Mi Lu
The nanoscale interfacial inhomogeneity in a cycled large-format LiFePO4 (LFP) composite electrode has been studied by X-ray photoemission electron microscopy at single particle spatial resolution with a probe depth of ∼5 nm. The loss of active lithium in cycled LFP causes the coexsitence of fully delithiated LFP (FePO4) and partially delithiated LFP (Li0.6FePO4 or Li0.8FePO4) as a function of the extent of lithium loss. The distribution of various lithium loss phases along with local agglomeration of LFP and degradation of binder and carbon black are correlatively visualized...
November 2, 2017: ACS Applied Materials & Interfaces
Ana Parabucki, Ilan Lampl
Local field potentials (LFPs) are an important measure of brain activity and have been used to address various mechanistic and behavioral questions. We revealed a prominent whisker-evoked LFP signal in the olfactory bulb and investigated its physiology. This signal, dependent on barrel cortex activation and highly correlated with its local activity, represented a pure volume conduction signal that was sourced back to the activity in the ventro-lateral orbitofrontal cortex, located a few millimeters away. Thus, we suggest that special care should be taken when acquiring and interpreting LFP data...
October 24, 2017: Cell Reports
Ana Ledo, Cátia F Lourenço, João Laranjinha, Greg A Gerhardt, Rui M Barbosa
Seizures are paroxysmal events in which increased neuronal activity is accompanied by an increase in localized energetic demand. The ability to simultaneously record electrical and chemical events using a single sensor poses a promising approach to identify seizure onset zones in the brain. In the present work, we used ceramic-based platinum microelectrode arrays (MEAs) to perform high-frequency amperometric recording of local pO2 and local field potential (LFP)-related currents during seizures in the hippocampus of chronically implanted freely moving rats...
November 7, 2017: Analytical Chemistry
Xuezhu Li, Zifang Zhao, Jun Ma, Shuang Cui, Ming Yi, Huailian Guo, You Wan
Previous studies have shown that multiple brain regions are involved in pain perception and pain-related neural processes by forming a functionally connected pain network. It is still unclear how these pain-related brain areas actively work together to generate the experience of pain. To get a better insight into the pain network, we implanted electrodes in four pain-related areas of rats including the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), primary somatosensory cortex (S1) and periaqueductal gray (PAG)...
2017: Frontiers in Neural Circuits
Carlos A Loza, Jonathan B Shute, Jose C Principe, Michael S Okun, Aysegul Gunduz
We propose a novel interpretation of local field potentials (LFP) based on a marked point process (MPP) framework that models relevant neuromodulations as shifted weighted versions of prototypical temporal patterns. Particularly, the MPP samples are categorized according to the well known oscillatory rhythms of the brain in an effort to elucidate spectrally specific behavioral correlates. The result is a transient model for LFP. We exploit data-driven techniques to fully estimate the model parameters with the added feature of exceptional temporal resolution of the resulting events...
July 2017: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Manling Ge, Jundan Guo, Yangyang Xing, Zhiguo Feng, Weide Lu, Xinxin Ma, Yuehua Geng, Xin Zhang
The inhibitory impacts of spikes on LFP theta rhythms(4-8Hz) are investigated around sporadic spikes(SSs) based on intracerebral EEG of 4 REM sleep patients with temporal lobe epilepsy(TLE) under the pre-surgical monitoring. Sequential interictal spikes in both genesis area and extended propagation pathway are collected, that, SSs genesis only in anterior hippocampus(aH)(possible propagation pathway in Entorhinal cortex(EC)), only in EC(possible propagation pathway in aH), and in both aH and EC synchronously...
July 2017: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Macauley S Breault, Pierre Sacre, Jacob J Johnson, Matthew Kerr, Matthew D Johnson, Juan Bulacio, Jorge Gonzalez-Martinez, Sridevi V Sarma, John T Gale
Sensorimotor control and the involvement of motor brain regions has been extensively studied, but the role nonmotor brain regions play during movements has been overlooked. This is particularly due to the difficulty of recording from multiple regions in the brain during motor control. In this study, we utilize stereoelectroencephalography (SEEG) recording techniques to explore the role nonmotor brain areas have on the way we move. Nine humans were implanted with SEEG depth electrodes for clinical purposes, which rendered access to local field potential (LFP) activity in deep and peripheral nonmotor structures...
July 2017: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Yonghui Dong, Zhigang Shang, Mengmeng Li, Xinyu Liu, Hong Wan
To solve the problems of Signal-to-Noise Ratio (SNR) and multicollinearity when the Local Field Potential (LFP) signals is used for the decoding of animal motion intention, a feature reconstruction of LFP signals based on partial least squares regression (PLSR) in the neural information decoding study is proposed in this paper. Firstly, the feature information of LFP coding band is extracted based on wavelet transform. Then the PLSR model is constructed by the extracted LFP coding features. According to the multicollinearity characteristics among the coding features, several latent variables which contribute greatly to the steering behavior are obtained, and the new LFP coding features are reconstructed...
July 2017: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Tianxiao Jiang, Hasan Siddiqui, Shruti Ray, Priscella Asman, Musa Ozturk, Nuri F Ince
This paper presents a portable platform to collect and review behavioral data simultaneously with neurophysiological signals. The whole system is comprised of four parts: a sensor data acquisition interface, a socket server for real-time data streaming, a Simulink system for real-time processing and an offline data review and analysis toolbox. A low-cost microcontroller is used to acquire data from external sensors such as accelerometer and hand dynamometer. The micro-controller transfers the data either directly through USB or wirelessly through a bluetooth module to a data server written in C++ for MS Windows OS...
July 2017: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"