Read by QxMD icon Read

regeneration of cartilage

Katie Bardsley, Agnieska Kwarciak, Christine Freeman, Ian Brook, Paul Hatton, Aileen Crawford
The regeneration of large bone defects remains clinically challenging. The aim of our study was to use a rat model to use nasal chondrocytes to engineer a hypertrophic cartilage tissue which could be remodelled into bone in vivo by endochondral ossification. Primary adult rat nasal chondrocytes were isolated from the nasal septum, the cell numbers expanded in monolayer culture and the cells cultured in vitro on polyglycolic acid scaffolds in chondrogenic medium for culture periods of 5-10 weeks. Hypertrophic differentiation was assessed by determining the temporal expression of key marker genes and proteins involved in hypertrophic cartilage formation...
October 11, 2016: Biomaterials
BanuPriya Sridharan, Amy D Laflin, Michael A Holtz, Donna M Pacicca, Nicholas K Wischmeier, Michael S Detamore
To date, many osteochondral regenerative approaches have utilized varied combinations of biocompatible materials and cells to engineer cartilage. Even in cell-based approaches, to date, no study has utilized stem cell aggregates alone for regenerating articular cartilage. Thus, the purpose of this study was to evaluate the performance of a novel stem cell-based aggregate approach in a fibrin carrier to regenerate osteochondral defects in the Sprague-Dawley rat trochlear groove model. Two different densities of rat bone marrow mesenchymal stem cell (rBMSC) aggregates were fabricated by the hanging drop technique...
October 22, 2016: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
M Aurich, D Albrecht, P Angele, C Becher, S Fickert, J Fritz, P E Müller, P Niemeyer, M Pietschmann, G Spahn, M Walther
Background: Osteochondral lesions (OCL) of the ankle are a common cause of ankle pain. Although the precise pathophysiology has not been fully elucidated, it can be assumed that a variety of factors are responsible, mainly including traumatic events such as ankle sprains. Advances in arthroscopy and imaging techniques, in particular magnetic resonance imaging (MRI), have improved the possibilities for the diagnosis of OCLs of the ankle. Moreover, these technologies aim at developing new classification systems and modern treatment strategies...
October 21, 2016: Zeitschrift Für Orthopädie und Unfallchirurgie
Andrea Schwab, Annick Meeuwsen, Franziska Ehlicke, Jan Hansmann, Lars Mulder, Anthal Smits, Heike Walles, Linda Kock
There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone which better represents the in vivo situation and enables supply of specific factors to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue (study A)...
October 21, 2016: ALTEX
Kedong Song, Wenfang Li, Hai Wang, Yu Zhang, Liying Li, Yiwei Wang, Hong Wang, Ling Wang, Tianqing Liu
Biological treatment using engineered osteochondral composites has received growing attention for the repair of cartilage defects. Osteochondral composites combined with a dynamic culture provide great potential for improving the quality of constructs and cartilage regeneration as dynamic conditions mimic the in vivo condition where cells were constantly subjected to mechanical and chemical stimulation. In the present study, biophasic composites were produced in vitro consisting of cell-hydrogel (CH) and cell-cancellous bone (CB) constructs, followed by culturing in a dynamic system in a spinner flask...
October 21, 2016: Biomedical Materials
James Holton, Mohamed Imam, Jonathan Ward, Martyn Snow
There has been great interest in bone marrow aspirate concentrate (BMAC) as a cost effective method in delivering mesenchymal stem cells (MSCs) to aid in the repair and regeneration of cartilage defects. Alongside MSCs, BMAC contains a range of growth factors and cytokines to support cell growth following injury. However, there is paucity of information relating to the basic science underlying BMAC and its exact biological role in supporting the growth and regeneration of chondrocytes. The focus of this review is the basic science underlying BMAC in relation to chondral damage and regeneration...
September 19, 2016: Orthopedic Reviews
Fiona E Freeman, Laoise McNamara
Tissue engineering and regenerative medicine have significant potential to treat bone pathologies by exploiting the capacity for bone progenitors to grow and produce tissue constituents under specific biochemical and physical conditions. However, conventional tissue engineering approaches, which combine stem cells with biomaterial scaffolds, are limited as the constructs often degrade, due to a lack of vascularisation, and lack the mechanical integrity to fulfil loading bearing functions, and as such are not yet widely used for clinical treatment of large bone defects...
October 19, 2016: Tissue Engineering. Part B, Reviews
Sally Roberts, Pauline Colombier, Aneka Sowman, Claire Mennan, Jan H D Rölfing, Jérôme Guicheux, James R Edwards
The extent of ageing in the musculoskeletal system during the life course affects the quality and length of life. Loss of bone, degraded articular cartilage, and degenerate, narrowed intervertebral discs are primary features of an ageing skeleton, and together they contribute to pain and loss of mobility. This review covers the cellular constituents that make up some key components of the musculoskeletal system and summarizes discussion from the 2015 Aarhus Regenerative Orthopaedic Symposium (AROS) (Regeneration in the Ageing Population) about how each particular cell type alters within the ageing skeletal microenvironment...
October 17, 2016: Acta Orthopaedica
Takashi Nishida, Satoshi Kubota, Masaharu Takigawa
CCN family protein 2/connective tissue growth factor (CCN2/CTGF) is a unique growth factor that promotes the proliferation and differentiation, but not the hypertrophy of articular chondrocytes in vitro. Based on these findings, we previously evaluated the cartilage-regenerative effects of recombinant CCN2 protein (rCCN2) by using both mono-iodoacetate (MIA) injection into the rat joint cavity and formation of full-thickness defects of rat articular cartilage in vivo, and our results suggested the utility of CCN2 in the regeneration of articular cartilage...
2017: Methods in Molecular Biology
Takashi Nishida, Satoshi Kubota, Eriko Aoyama, Nobuyasu Yamanaka, Karen M Lyons, Masaharu Takigawa
OBJECTIVE: CCN family protein 2/connective tissue growth factor (CCN2/CTGF) promotes cartilage regeneration in experimental osteoarthritis (OA) models. However, CCN2 production is very low in articular cartilage. The aim of this study was to investigate whether or not CCN2 was promoted by cultured chondrocytes treated with low-intensity pulsed ultrasound (LIPUS) and to clarify its mechanism. METHODS: Human chondrocytic cell line HCS-2/8, rat primary epiphyseal and articular cartilage cells, and Ccn2-deficient chondrocytes that impaired chondrocyte differentiation, were treated with LIPUS for 20 min at 3...
October 8, 2016: Osteoarthritis and Cartilage
Feiyu Wang, Yuhuan Sun, Dongmei He, Lizhen Wang
PURPOSE: To explore the potential use of concentrated growth factor (CGF) in the treatment of temporomandibular joint osteoarthritis (TMJ-OA). MATERIALS AND METHODS: Surgical defects were created bilaterally on the condylar cartilage and bone to induce TMJ-OA in goats. CGF was applied to the right joints (CGF group) and physiologic saline was applied to the left joints (unrepaired group). There was a 1-month period of observation after the operation. These joint specimens were evaluated and compared based on gross appearance and histopathologic observations with hematoxylin and eosin (HE)...
September 15, 2016: Journal of Oral and Maxillofacial Surgery
Mildred C Embree, Mo Chen, Serhiy Pylawka, Danielle Kong, George M Iwaoka, Ivo Kalajzic, Hai Yao, Chancheng Shi, Dongming Sun, Tzong-Jen Sheu, David A Koslovsky, Alia Koch, Jeremy J Mao
Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment...
October 10, 2016: Nature Communications
Zhiguo Yuan, Shuyun Liu, Chunxiang Hao, Weimin Guo, Shuang Gao, Mingjie Wang, Mingxue Chen, Zhen Sun, Yichi Xu, Yu Wang, Jiang Peng, Mei Yuan, Quan-Yi Guo
Tissue-engineered meniscus regeneration is a very promising treatment strategy for meniscus lesions. However, generating the scaffold presents a huge challenge for meniscus engineering as this has to meet particular biomechanical and biocompatibility requirements. In this study, we utilized acellular meniscus extracellular matrix (AMECM) and demineralized cancellous bone (DCB) to construct three different types of three-dimensional porous meniscus scaffold: AMECM, DCB, and AMECM/DCB, respectively. We tested the scaffolds' physicochemical characteristics and observed their interactions with meniscus fibrochondrocytes to evaluate their cytocompatibility...
December 2016: Biomaterials
Henrique Almeida, Binulal Nelson Sathy, Ivan Dudurych, Conor Timothy Buckley, Fergal J O'Brien, Daniel John Kelly
Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration...
October 6, 2016: Tissue Engineering. Part A
Adam O'Reilly, Daniel John Kelly
Developing successful tissue engineering strategies requires an understanding of how cells within an implanted scaffold interacts with the host environment. The objective of this study was to use a computational mechanobiological model to explore how the design of a cell laden scaffold influences the spatial formation of cartilage and bone within an osteochondral defect. Tissue differentiation was predicted using a previously developed model in which cell fate depends on the local oxygen tension and the mechanical environment within a damaged joint...
October 6, 2016: Tissue Engineering. Part A
Paolo Giannoni, Federico Villa, Cinzia Cordazzo, Luciano Zardi, Paolo Fattori, Rodolfo Quarto, Mauro Fiorini
Three different heterologous substitutes for bone regeneration, manufactured with equine-derived cortical powder (CP), cancellous chips (CC) and demineralized bone matrix granules (DBM), were compared in in vitro and in vivo settings. We tested: a commercially available bone paste (Osteoplant-Activagen™, consisting of aqueous collagenous carrier, CP, DBM; named A); a second-generation injectable paste (20 kDa polyethylene glycol/hydroxypropyl-methyl cellulose-based hydrogel, CP, DBM; B); a pre-formed bone filler (400 kDa polyethylene oxide/hydroxypropyl-methyl cellulose-based hydrogel, CP, CC, DBM; C)...
November 18, 2016: Biomaterials Science
M Tavafoghi, M Cerruti
Polar and charged amino acids (AAs) are heavily expressed in non-collagenous proteins (NCPs), and are involved in hydroxyapatite (HA) mineralization in bone. Here, we review what is known on the effect of single AAs on HA precipitation. Negatively charged AAs, such as aspartic acid, glutamic acid (Glu) and phosphoserine are largely expressed in NCPs and play a critical role in controlling HA nucleation and growth. Positively charged ones such as arginine (Arg) or lysine (Lys) are heavily involved in HA nucleation within extracellular matrix proteins such as collagen...
October 2016: Journal of the Royal Society, Interface
L C Hermeto, R DeRossi, R J Oliveira, J R Pesarini, A C M B Antoniolli-Silva, P H A Jardim, A E Santana, E Deffune, J C Rinaldi, L A Justulin
The current study aims to evaluate the macroscopic and histological effects of autologous mesenchymal stem cells (MSC) and platelet-rich plasma on knee articular cartilage regeneration in an experimental model of osteoarthritis. Twenty-four rabbits were randomly divided into four groups: control group, platelet-rich plasma group, autologous MSC undifferentiated group, and autologous MSC differentiated into chondrocyte group. Collagenase solution was used to induce osteoarthritis, and treatments were applied to each group at 6 weeks following osteoarthritis induction...
September 2, 2016: Genetics and Molecular Research: GMR
Margot Den Hondt, Bart M Vanaudenaerde, Erik K Verbeken, Jan J Vranckx
BACKGROUND: Successful trachea transplantation comprises the use of biocompatible constructs with little immune-reactivity, submucosal revascularization and creation of an epithelial covering. Allogenic chondrocytes might be protected from an overt immune-response due to physical isolation. Our aim was to evaluate in-vivo biocompatibility of allotracheae, stripped of their highly-immunogenic inner lining. Secondly, we established whether these constructs might serve as suitable scaffolds for autologous epithelial grafting...
October 4, 2016: Acta Chirurgica Belgica
Maki Itokazu, Shigeyuki Wakitani, Hisashi Mera, Yoshihiro Tamamura, Yasushi Sato, Mutsumi Takagi, Hiroaki Nakamura
OBJECTIVE: The object of this study was to determine culture conditions that create stable scaffold-free cartilage-like cell-sheets from human bone marrow-derived mesenchymal stem cells (hBMSCs) and to assess their effects after transplantation into osteochondral defects in nude rats. DESIGN: (Experiment 1) The hBMSCs were harvested from 3 males, the proliferative and chondrogenic capacities were assessed at passage 1, and the cells were expanded in 3 different culture conditions: (1) 5% fetal bovine serum (FBS), (2) 10% FBS, and (3) 5% FBS with fibroblast growth factor 2 (FGF-2)...
October 2016: Cartilage
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"