Read by QxMD icon Read

Genome editing

Toshiyuki Yamaji, Aya Horie, Yuriko Tachida, Chisato Sakuma, Yusuke Suzuki, Yasunori Kushi, Kentaro Hanada
Ceramide is a common precursor of sphingomyelin (SM) and glycosphingolipids (GSLs) in mammalian cells. Ceramide synthase 2 (CERS2), one of the six ceramide synthase isoforms, is responsible for the synthesis of very long chain fatty acid (C20-26 fatty acids) (VLC)-containing ceramides (VLC-Cer). It is known that the proportion of VLC species in GSLs is higher than that in SM. To address the mechanism of the VLC-preference of GSLs, we used genome editing to establish three HeLa cell mutants that expressed different amounts of CERS2 and compared the acyl chain lengths of SM and GSLs by metabolic labeling experiments...
October 21, 2016: International Journal of Molecular Sciences
Steffen Grampp, James L Platt, Victoria Lauer, Rafik Salama, Franziska Kranz, Viviana K Neumann, Sven Wach, Christine Stöhr, Arndt Hartmann, Kai-Uwe Eckardt, Peter J Ratcliffe, David R Mole, Johannes Schödel
Clear cell renal cell carcinoma (ccRCC) is characterized by loss of function of the von Hippel-Lindau tumour suppressor (VHL) and unrestrained activation of hypoxia-inducible transcription factors (HIFs). Genetic and epigenetic determinants have an impact on HIF pathways. A recent genome-wide association study on renal cancer susceptibility identified single-nucleotide polymorphisms (SNPs) in an intergenic region located between the oncogenes MYC and PVT1. Here using assays of chromatin conformation, allele-specific chromatin immunoprecipitation and genome editing, we show that HIF binding to this regulatory element is necessary to trans-activate MYC and PVT1 expression specifically in cells of renal tubular origins...
October 24, 2016: Nature Communications
Asuka Onuma, Wataru Fujii, Koji Sugiura, Kunihiko Naito
Genome editing using the CRISPR/Cas system can induce mutations with high efficiency, and allows easier production of genome-modified animals than that offered by the conventional method where embryonic stem cells are used. However, studies using CRISPR/Cas systems have been mostly limited to proliferating somatic cells and pronuclear-stage fertilized eggs. In contrast, the efficiency of a CRISPR/Cas system in immature and maturing oocytes progressing through meiosis has not yet been assessed. In the present study, we evaluated the genome-modification efficiency of the CRISPR/Cas system during meiotic maturation of porcine oocytes...
October 21, 2016: Journal of Reproduction and Development
Wojciech Rosikiewicz, Izabela Makałowska
Natural antisense transcripts (NATs) are RNA molecules that originate from opposite DNA strands of the same genomic locus (cis-NAT) or unlinked genomic loci (trans-NAT). NATs may play various regulatory functions at the transcriptional level via transcriptional interference. NATs may also regulate gene expression levels post-transcriptionally via induction of epigenetic changes or double-stranded RNA formation, which may lead to endogenous RNA interference, RNA editing or RNA masking. The true biological significance of the natural antisense transcripts remains controversial despite many years of research...
October 21, 2016: Acta Biochimica Polonica
Julien Muffat, Yun Li, Rudolf Jaenisch
In vitro differentiation of human pluripotent stem cells provides a systematic platform to investigate the physiological development and function of the human nervous system, as well as the etiology and consequence when these processes go awry. Recent development in three-dimensional (3D) organotypic culture systems allows modeling of the complex structure formation of the human CNS, and the intricate interactions between various resident neuronal and glial cell types. Combined with an ever-expanding genome editing and regulation toolkit such as CRISPR/Cas9, it is now a possibility to study human neurological disease in the relevant molecular, cellular and anatomical context...
October 18, 2016: Current Opinion in Cell Biology
Nina Xie, He Gong, Joshua A Suhl, Pankaj Chopra, Tao Wang, Stephen T Warren
Fragile X syndrome (FXS) is a common cause of intellectual disability that is most often due to a CGG-repeat expansion mutation in the FMR1 gene that triggers epigenetic gene silencing. Epigenetic modifying drugs can only transiently and modestly induce FMR1 reactivation in the presence of the elongated CGG repeat. As a proof-of-principle, we excised the expanded CGG-repeat in both somatic cell hybrids containing the human fragile X chromosome and human FXS iPS cells using the CRISPR/Cas9 genome editing. We observed transcriptional reactivation in approximately 67% of the CRISPR cut hybrid colonies and in 20% of isolated human FXS iPSC colonies...
2016: PloS One
Glenn Yiu, Eric Tieu, Anthony T Nguyen, Brittany Wong, Zeljka Smit-McBride
Purpose: To employ type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease to suppress ocular angiogenesis by genomic disruption of VEGF-A in human RPE cells. Methods: CRISPR sequences targeting exon 1 of human VEGF-A were computationally identified based on predicted Cas9 on- and off-target probabilities. Single guide RNA (gRNA) cassettes with these target sequences were cloned into lentiviral vectors encoding the Streptococcuspyogenes Cas9 endonuclease (SpCas9) gene...
October 1, 2016: Investigative Ophthalmology & Visual Science
Yanina S Bogliotti, Marcela Vilarino, Pablo J Ross
Cytoplasmic microinjection into one-cell embryos is a very powerful technique. As an example, it enables the delivery of genome editing tools that can create genetic modifications that will be present in every cell of an adult organism. It can also be used to deliver siRNA, mRNAs or blocking antibodies to study gene function in preimplantation embryos. The conventional technique for microinjecting embryos used in rodents consists of a very thin micropipette that directly penetrates the plasma membrane when advanced into the embryo...
October 5, 2016: Journal of Visualized Experiments: JoVE
Elizabeth M Dlugosz, Scott C Lenaghan, C Neal Stewart
Over the last decade there has been a resurgence in the use of plant protoplasts that range from model species to crop species, for analysis of signal transduction pathways, transcriptional regulatory networks, gene expression, genome-editing, and gene-silencing. Furthermore, significant progress has been made in the regeneration of plants from protoplasts, which has generated even more interest in the use of these systems for plant genomics. In this work, a protocol has been developed for automation of protoplast isolation and transformation from a 'Bright Yellow' 2 (BY-2) tobacco suspension culture using a robotic platform...
September 27, 2016: Journal of Visualized Experiments: JoVE
In K Cho, Silun Wang, Hui Mao, Anthony Ws Chan
Recent advances in stem cell-based regenerative medicine, cell replacement therapy, and genome editing technologies (i.e. CRISPR-Cas 9) have sparked great interest in in vivo cell monitoring. Molecular imaging promises a unique approach to noninvasively monitor cellular and molecular phenomena, including cell survival, migration, proliferation, and even differentiation at the whole organismal level. Several imaging modalities and strategies have been explored for monitoring cell grafts in vivo. We begin this review with an introduction describing the progress in stem cell technology, with a perspective toward cell replacement therapy...
2016: American Journal of Nuclear Medicine and Molecular Imaging
Szabolcs Makai, László Tamás, Angéla Juhász
Wheat has been cultivated for 10000 years and ever since the origin of hexaploid wheat it has been exempt from natural selection. Instead, it was under the constant selective pressure of human agriculture from harvest to sowing during every year, producing a vast array of varieties. Wheat has been adopted globally, accumulating variation for genes involved in yield traits, environmental adaptation and resistance. However, one small but important part of the wheat genome has hardly changed: the regulatory regions of both the x- and y-type high molecular weight glutenin subunit (HMW-GS) genes, which are alone responsible for approximately 12% of the grain protein content...
2016: Frontiers in Plant Science
Ching-Tzu Yen, Meng-Ni Fan, Yung-Li Yang, Sheng-Chieh Chou, I-Shing Yu, Shu-Wha Lin
Hemophilia is the most well-known hereditary bleeding disorder, with an incidence of one in every 5000 to 30,000 males worldwide. The disease is treated by infusion of protein products on demand and as prophylaxis. Although these therapies have been very successful, some challenging and unresolved tasks remain, such as reducing bleeding rates, presence of target joints and/or established joint damage, eliminating the development of inhibitors, and increasing the success rate of immune-tolerance induction (ITI)...
2016: Thrombosis Journal
James West, W Warren Gill
Genome editing in large animals has tremendous practical applications, from more accurate models for medical research through improved animal welfare and production efficiency. Although genetic modification in large animals has a 30 year history, until recently technical issues limited its utility. The original methods - pronuclear injection and integrating viruses - were plagued with problems associated with low efficiency, silencing, poor regulation of gene expression, and variability associated with random integration...
June 2016: Journal of Equine Veterinary Science
Jeong Hyo Lee, Si Won Kim, Tae Sub Park
Objective: Based on rapid advancement of genetic modification techniques, genomic editing is expected to become the most efficient tool for improvement of economic traits in livestock as well as poultry. In this study, we examined and verified the nickase of mutated CRISPR-associated protein 9 (Cas9) to modulate the specific target gene in chicken DF1 cells. Methods: Chicken myostatin which inhibits muscle cell growth and differentiation during myogenesis was targeted to be deleted and mutated by the Cas9-D10A nickase...
October 19, 2016: Asian-Australasian Journal of Animal Sciences
Saura R Silva, Yani C A Diaz, Helen Alves Penha, Daniel G Pinheiro, Camila C Fernandes, Vitor F O Miranda, Todd P Michael, Alessandro M Varani
Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed...
2016: PloS One
Jiangming Sun, Yang De Marinis, Peter Osmark, Pratibha Singh, Annika Bagge, Bérengère Valtat, Petter Vikman, Peter Spégel, Hindrik Mulder
RNA editing is a post-transcriptional alteration of RNA sequences that, via insertions, deletions or base substitutions, can affect protein structure as well as RNA and protein expression. Recently, it has been suggested that RNA editing may be more frequent than previously thought. A great impediment, however, to a deeper understanding of this process is the paramount sequencing effort that needs to be undertaken to identify RNA editing events. Here, we describe an in silico approach, based on machine learning, that ameliorates this problem...
2016: PloS One
Colin Crist
Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because, while on one hand, skeletal muscle regeneration after injury is arguably one of the best studied stem cell dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine based therapies for skeletal muscle...
October 20, 2016: Journal of Pathology
J Wu, A Platero Luengo, M A Gil, K Suzuki, C Cuello, M Morales Valencia, I Parrilla, C A Martinez, A Nohalez, J Roca, E A Martinez, J C Izpisua Belmonte
More than eighteen years have passed since the first derivation of human embryonic stem cells (ESCs), but their clinical use is still met with several challenges, such as ethical concerns regarding the need of human embryos, tissue rejection after transplantation and tumour formation. The generation of human induced pluripotent stem cells (iPSCs) enables the access to patient-derived pluripotent stem cells (PSCs) and opens the door for personalized medicine as tissues/organs can potentially be generated from the same genetic background as the patient recipients, thus avoiding immune rejections or complication of immunosuppression strategies...
October 2016: Reproduction in Domestic Animals, Zuchthygiene
Laure D Sultan, Daria Mileshina, Felix Grewe, Katarzyna Rolle, Sivan Abudraham, Paweł Głodowicz, Adnan Khan Niazi, Ido Keren, Sofia Shevtsov, Liron Klipcan, Jan Barciszewski, Jeffrey P Mower, Andre Dietrich, Oren Ostersetzer
Group II introns are large catalytic RNAs that are ancestrally related to nuclear spliceosomal introns. Sequences corresponding to group II RNAs are found in many prokaryotes and are particularly prevalent within plants organellar genomes. Proteins encoded within the introns themselves (maturases) facilitate the splicing of their own host pre-RNAs. Mitochondrial introns in plants have diverged considerably in sequence and have lost their maturases. In angiosperms, only a single maturase has been retained in the mitochondrial DNA: the matR gene found within NADH dehydrogenase 1 (nad1) intron 4...
October 19, 2016: Plant Cell
Steven J Kleene, Nancy K Kleene
Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening monogenic renal disease. ADPKD results from mutations in either of two proteins: polycystin-1 (also known as PC1 or PKD1) or transient receptor potential cation channel, subfamily P, member 2 (TRPP2, also known as polycystin-2, PC2, or PKD2). Each of these proteins is expressed in the primary cilium that extends from many renal epithelial cells. Existing evidence suggests that the cilium can promote renal cystogenesis, while PC1 and TRPP2 counter this cystogenic effect...
October 19, 2016: American Journal of Physiology. Renal Physiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"