Read by QxMD icon Read

Rumen methane emission

Andrea Söllinger, Alexander Tøsdal Tveit, Morten Poulsen, Samantha Joan Noel, Mia Bengtsson, Jörg Bernhardt, Anne Louise Frydendahl Hellwing, Peter Lund, Katharina Riedel, Christa Schleper, Ole Højberg, Tim Urich
Ruminant livestock is a major source of the potent greenhouse gas methane. The complex rumen microbiome, consisting of bacteria, archaea, and microbial eukaryotes, facilitates anaerobic plant biomass degradation in the cow rumen, leading to methane emissions. Using an integrated approach combining multidomain quantitative metatranscriptomics with gas and volatile fatty acid (VFA) profiling, we aimed at obtaining the most comprehensive picture of the active rumen microbiome during feed degradation to date. Bacterial, archaeal, and eukaryotic biomass, but also methane emissions and VFA concentrations, increased drastically within an hour after feed intake...
July 2018: MSystems
Rajaraman Bharanidharan, Selvaraj Arokiyaraj, Eun Bae Kim, Chang Hyun Lee, Yang Won Woo, Youngjun Na, Danil Kim, Kyoung Hoon Kim
Few studies have examined the effects of feeding total mixed ration (TMR) versus roughage and concentrate separately (SF) on ruminant methane production. Therefore, this study compared differences in methane production, ruminal characteristics, total tract digestibility of nutrients, and rumen microbiome between the two feeding methods in Holstein steers. A total six Holstein steers of initial bodyweights 540 ± 34 kg were divided into two groups and assigned to a same experimental diet with two different feeding systems (TMR or SF) in a crossover design with 21 d periods...
2018: PloS One
Sieglinde Debruyne, Alexis Ruiz-González, Einar Artiles-Ortega, Bart Ampe, Wim Van Den Broeck, Ellen De Keyser, Leen Vandaele, Karen Goossens, Veerle Fievez
No abstract text is available yet for this article.
August 7, 2018: Journal of Animal Science
Andres N Haro, Maria Dolores Carro, Trinidad de Evan, Javier González
Ruminants have a low efficiency of nitrogen (N) utilization that has negative implications for animal production and the environment, but reducing the ruminal degradation of protein can help to reduce N losses. The objective of this study was to evaluate the inclusion of sunflower meal (SM) and sunflower seed (SS) protected against ruminal degradation in high-cereal diets on in vitro ruminal fermentation and CH4 production. Samples of SS and SM were sprayed with a solution of malic acid 1 M (400 ml/kg sample) and dried at 150°C for 1 hr as a protective treatment...
July 31, 2018: Journal of Animal Physiology and Animal Nutrition
Seon-Ho Kim, Lovelia L Mamuad, Yeon-Jae Choi, Haguyn G Sung, Kwang-Keun Cho, Sang Suk Lee
Animal science nutrition studies are increasingly focusing on finding solutions to reduce methane (CH4) emissions. In the present study, we evaluated the effect of reductive acetogenic bacteria [acetogen probiotics (AP)] and lauric acid (LA) on in vivo rumen fermentation and microbial populations in Hanwoo steers. Four cannulated Hanwoo steers (392 ± 14 kg) were analyzed in a 4 × 4 Latin square design and were placed in hood-type chambers. They were fed similar amounts of concentrate and rice straw within and experimental design as follows: control (Con; 40 g DM basal feed, nonaddition of AP or LA), T1 = LA (40 g DM basal feed mixed with 40 g LA), T2 = AP (40 g DM basal feed, fermented with AP), and T3 = LA + AP (40 g DM basal feed, fermented with AP and mixed with 40 g LA)...
July 27, 2018: Journal of Animal Science
Byeng Ryel Min, Sandra Solaiman
Comparative aspects of plant tannins on digestive physiology, nutrition and microbial community in sheep and goats are discussed in the context of differences due to feed intake, digestibility, utilization of nutrients and microbial community. The purpose of this review was to present an overview of the potential benefits of tannin-containing diets for sheep and goats and specie differences in their response to tannins. It is well established that moderate level of tannins in the diet (3%-4% tannins DM) can precipitate with soluble proteins and increase protein supply to the sheep, but comparative aspects of tannin-containing diets in sheep and goats on animal performance, digestive physiology, rumen microbial changes and potential benefits to sustainable animal production by those compounds have received little attention...
July 24, 2018: Journal of Animal Physiology and Animal Nutrition
S J Waite, J Zhang, J E Cater, G C Waghorn, W E Bain, J C McEwan, V Suresh
Published studies have shown that methane yield (g CH4/kg dry matter) from sheep is positively correlated with the size (volume and surface area) of the reticulo-rumen (RR) and the weight of its contents. However, the relationship between CH4 yield and RR shape has not been investigated. In this work, shape analysis has been performed on a data set of computerised tomography (CT) scans of the RR from sheep having high and low CH4 yields (n=20 and n=17, respectively). The three-dimensional geometries of the RRs were reconstructed from segmented scan data and split into three anatomical regions...
July 24, 2018: Animal: An International Journal of Animal Bioscience
Luna Baruah, Pradeep Kumar Malik, Atul P Kolte, Arindam Dhali, Raghavendra Bhatta
Aim: The aim of the study was to explore the anti-methanogenic potential of phyto-sources from Northeast region of the country and assess the effect on rumen fermentation characteristics and protozoa for their likely inclusion in animal diet to reduce methane emission. Materials and Methods: Twenty phyto-sources were collected from Northeast state, Assam, during March to April 2014. Phyto-sources were analyzed for their tannin content followed by screening for methane mitigation potential using in vitro system...
June 2018: Veterinary World
Emily McGovern, Sinéad M Waters, Gordon Blackshields, Matthew S McCabe
The rumen microbiome scientific community has utilized amplicon sequencing as an aid in identifying potential community compositional trends that could be used as an estimation of various production and performance traits including methane emission, animal protein production efficiency, and ruminant health status. In order to translate rumen microbiome studies into executable application, there is a need for experimental and analytical concordance within the community. The objective of this study was to assess these factors in relation to selected currently established methods for 16S phylogenetic community analysis on a microbial community standard (MC) and a DNA standard (DS; ZymoBIOMICSTM )...
2018: Frontiers in Microbiology
Su Chui Len Candyrine, Mazrul Fahmi Mahadzir, Sani Garba, Mohammad Faseleh Jahromi, Mahdi Ebrahimi, Yong Meng Goh, Anjas Asmara Samsudin, Awis Qurni Sazili, Wei Li Chen, Siva Ganesh, Ron Ronimus, Stefan Muetzel, Juan Boo Liang
Twenty male Saanen goats were randomly assigned to four levels of lovastatin supplementation and used to determine the optimal dosage and sustainability of naturally produced lovastatin from fermentation of palm kernel cake (PKC) with Aspergillus terreus on enteric methane (CH4) mitigation. The effects on ruminal microbiota, rumen fermentation, feed digestibility and health of animal were determined over three measuring periods (4-, 8- and 12-weeks) and the accumulation of lovastatin in tissues was determined at the end of the experiment...
2018: PloS One
Cristina Saro, Ulli M Hohenester, Mickael Bernard, Marie Lagrée, Cécile Martin, Michel Doreau, Hamid Boudra, Milka Popova, Diego P Morgavi
Modulating the assembly of the ruminal microbiota might have practical implications in production. We tested how an early-life dietary intervention in lambs influences the diversity and function of the ruminal microbiota during and after the intervention. Microbiota resilience during a repeated dietary intervention was also tested. The treatment, aiming to mitigate enteric methane emissions, combined garlic essential oil and linseed oil. Fifty-six lambs and their dams were allocated to two groups and treatment (T1) or placebo (C1) was drenched from birth until 10 weeks of life...
2018: Frontiers in Microbiology
Md Najmul Haque
Methane emission from the enteric fermentation of ruminant livestock is a main source of greenhouse gas (GHG) emission and a major concern for global warming. Methane emission is also associated with dietary energy lose; hence, reduce feed efficiency. Due to the negative environmental impacts, methane mitigation has come forward in last few decades. To date numerous efforts were made in order to reduce methane emission from ruminants. No table mitigation approaches are rumen manipulation, alteration of rumen fermentation, modification of rumen microbial biodiversity by different means and rarely by animal manipulations...
2018: Journal of Animal Science and Technology
K E Kliem, D J Humphries, P Kirton, D I Givens, C K Reynolds
It is known that supplementing dairy cow diets with full-fat oilseeds can be used as a strategy to mitigate methane emissions, through their action on rumen fermentation. However, direct comparisons of the effect of different oil sources are very few, as are studies implementing supplementation levels that reflect what is commonly fed on commercial farms. The objective was to investigate the effect of feeding different forms of supplemental plant oils on both methane emissions and milk fatty acid (FA) profile...
June 19, 2018: Animal: An International Journal of Animal Bioscience
Metha Wanapat, Chaowarit Mapato
Objective: As the climate changes, it influences ruminant's feed intake, nutrient digestibility, rumen methane production and emission. This experiment aimed to evaluate the effect of feeding Sweet grass (Pennisetum purpureum cv. Mahasarakham) as a new source of good quality forage to improve feed utilization efficiency and to mitigate rumen methane production and emission. Methods: Four, growing crossbred of Holstein Friesian heifers, 14 months old, were arranged in a 4 x 4 Latin square design to receive four dietary treatments...
May 31, 2018: Asian-Australasian Journal of Animal Sciences
Shimaa A Mousa, Pradeep K Malik, Atul P Kolte P Kolte, Raghavendra Bhatta, Shigemitsu Kasuga, Yutaka Uyeno
Objective: Ensiling of tannin-rich fruit byproducts (FB) involves quantitative and qualitative changes in the tannins, which would consequently change the rumen fermentation characteristics. This study aimed to evaluate whether ensiled FBs are effective in mitigating methane emission from ruminants by conducting in vitro assessments. Methods: Fruit byproducts (grape pomace, wild grape pomace, and persimmon skin) were collected and subjected to four-week ensiling by Lactobacillus buchneri inoculant...
May 31, 2018: Asian-Australasian Journal of Animal Sciences
Bing Wang, Miao Jia, Luoyun Fang, Linshu Jiang, Yanling Li
The objective of this study was to evaluate antimethanogenic activity of eucalyptus oil (EUC) and anise oil (ANI) in vitro and in vivo using sheep as a model. In vitro study was conducted using batch culture technique, each of EUC and ANI were added at 0, 50, 100, 200, or 400 mg/L of fermentation media with substrate containing 60% corn-based concentrate and 40% hay (DM basis). Total gas production (GP) linearly (P < 0.01) decreased with increasing ANI, whereas the GP was not affected with EUC addition. Supplementation of ANI and EUC linearly (P < 0...
July 28, 2018: Journal of Animal Science
Camila S Cunha, Marcos I Marcondes, Cristina M Veloso, Hilário C Mantovani, Luiz Gustavo R Pereira, Thierry R Tomich, Kimberly A Dill-McFarland, Garret Suen
BACKGROUND: Heifers emit more enteric methane (CH4 ) than adult cows and these emissions tend to decrease per unit feed intake as they age. However, common mitigation strategies like expensive high-quality feeds are not economically feasible for these pre-production animals. Given its direct role in CH4 production, altering the rumen microbiota is another potential avenue for reducing CH4 production by ruminants. However, to identify effective microbial targets, a better understanding of the rumen microbiota and its relationship to CH4 production across heifer development is needed...
May 31, 2018: Journal of the Science of Food and Agriculture
Matheus Capelari, Kristen A Johnson, Brooke Latack, Jolene Roth, Wendy Powers
Because enteric methane (CH4) production from ruminants represents a source of greenhouse gas emissions and an energy loss for the host animal alternatives to minimize emissions is a current research priority. Seven 37-d trials tested the effect of encapsulated nitrate (EN) and sodium monensin (MON) in diets commonly fed to dairy (DAIRY; 50:50 forage to concentrate; four trials) and beef cattle (BEEF; 15:85 forage to concentrate; three trials) on rumen fermentation and CH4 production using a semi-continuous fermentation system...
July 28, 2018: Journal of Animal Science
Yoshiaki Sato, Wanna Angthong, Patima Butcha, Motoharu Takeda, Kazato Oishi, Hiroyuki Hirooka, Hajime Kumagai
Four Thai native cattle were used in a 4 × 4 Latin square design experiment to evaluate the availability of desalted mother liquor (DML) as replacement of salt in concentrate. Each cattle was assigned to one of the following concentrate feeding treatments: C1, 1% NaCl was added as salt; C2, 2% NaCl was added as salt; D1, 1% NaCl was replaced by DML; D2, 2% NaCl was replaced by DML, on a dry matter (DM) basis. The animals were fed rice straw and experimental concentrates (40:60) at 1.9% of body weight on a DM basis, daily...
May 16, 2018: Animal Science Journal, Nihon Chikusan Gakkaihō
Elizabeth A Latham, William E Pinchak, Julian Trachsel, Heather K Allen, Todd R Callaway, David J Nisbet, Robin C Anderson
The effects of dietary nitrate and Paenibacillus 79R4 (79R4), a denitrifying bacterium, when co-administered as a probiotic, on methane emissions, nitrate and nitrite-metabolizing capacity and fermentation characteristics were studied in vitro. Mixed populations of rumen microbes inoculated with 79R4 metabolized all levels of nitrite studied after 24 h in vitro incubation. Results from in vitro simulations resulted in up to 2 log10 colony forming unit reductions in E. coli O157:H7 and Campylobacter jejuni when these were co-cultured with 79R4...
September 2018: Bioresource Technology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"