Read by QxMD icon Read

Deep oscillation

Raimondas Zemblys, Diederick C Niehorster, Kenneth Holmqvist
Existing event detection algorithms for eye-movement data almost exclusively rely on thresholding one or more hand-crafted signal features, each computed from the stream of raw gaze data. Moreover, this thresholding is largely left for the end user. Here we present and develop gazeNet, a new framework for creating event detectors that do not require hand-crafted signal features or signal thresholding. It employs an end-to-end deep learning approach, which takes raw eye-tracking data as input and classifies it into fixations, saccades and post-saccadic oscillations...
October 17, 2018: Behavior Research Methods
S Rosat, J Hinderer
Gravimetry is a well-established tool to probe the deep Earth's processes. Geophysical signals coming from the deep Earth, like the inner core free oscillations, have however never been detected. Challenging quests raise the question of the limits of detection of elusive signals at the Earth's surface. Knowledge of the instrumental limits and of the environmental noise level at a site is fundamental to judge the true sensitivity of an instrument. We perform a noise level comparison of various gravimeters and a long-period seismometer at the J9 gravimetric observatory of Strasbourg (France) to provide a reference of instrumental performances...
October 17, 2018: Scientific Reports
Ian G Brennan, J Scott Keogh
On deep time scales, changing climatic trends can have a predictable influence on macroevolution. From evidence of mass extinctions, we know that rapid climatic oscillations can indirectly open niche space and precipitate adaptive radiation, changing the course of ecological diversification. These dramatic shifts in the global climate, however, are rare events relative to extended periods of protracted climate change and biome turnover. It remains unclear whether during gradually changing periods, shifting habitats may instead promote non-adaptive speciation by facilitating allopatry and phenotypic conservatism...
October 17, 2018: Proceedings. Biological Sciences
Dongsheng Liu, Ang Hu, Kefeng Zhang
Software-defined radio (SDR) is a good solution for complying with the existing and incoming protocols for emerging wireless sensor networks (WSN) and internet of things (IoT) applications. The frequency synthesizer in a SDR tranceiver usually consists of a phase locked loop (PLL) and a post synthesizer. The PLL is the narrow band signal source and the post synthesizer generates wideband outputs by mixing and dividing. Compared with a frequency synthesizer utilizing the wideband PLL, this synthesizer features relatively constant loop parameters and mitigates the requirement for the oscillator...
October 14, 2018: Sensors
Paul-Antoine Libourel, Baptiste Barrillot, Sébastien Arthaud, Bertrand Massot, Anne-Laure Morel, Olivier Beuf, Anthony Herrel, Pierre-Hervé Luppi
It is crucial to determine whether rapid eye movement (REM) sleep and slow-wave sleep (SWS) (or non-REM sleep), identified in most mammals and birds, also exist in lizards, as they share a common ancestor with these groups. Recently, a study in the bearded dragon (P. vitticeps) reported states analogous to REM and SWS alternating in a surprisingly regular 80-s period, suggesting a common origin of the two sleep states across amniotes. We first confirmed these results in the bearded dragon with deep brain recordings and electro-oculogram (EOG) recordings...
October 2018: PLoS Biology
Dibyashakti Panda, Bhaskar Kundu, Vineet K Gahalaut, Roland Bürgmann, Birendra Jha, Renuhaa Asaithambi, Rajeev Kumar Yadav, Naresh Krishna Vissa, Amit Kumar Bansal
The interaction between seasonally-induced non-tectonic and tectonic deformation along the Himalayan plate boundary remains debated. Here, we propose that tectonic deformation along this plate boundary can be significantly influenced by the deformation induced by the non-tectonic hydrological loading cycles. We explore seasonal mass oscillations by continental water storage in Southeast Asia and Himalayan arc region using continuous Global Positioning System measurements and satellite data from the Gravity Recovery and Climate Experiment...
October 8, 2018: Nature Communications
T Peppler, P Dyke, M Zamorano, I Herrera, S Hoinka, C J Vale
We present an experimental investigation of collective oscillations in harmonically trapped Fermi gases through the crossover from two to three dimensions. Specifically, we measure the frequency of the radial monopole oscillation or breathing mode in highly oblate gases with tunable interactions. The breathing mode frequency is set by the adiabatic compressibility and probes the thermodynamic equation of state. In 2D, a dynamical scaling symmetry for atoms interacting via a δ potential predicts the breathing mode to occur at exactly twice the harmonic confinement frequency...
September 21, 2018: Physical Review Letters
Nicholas R Waytowich, Vernon Lawhern, Javier O Garcia, Jennifer Cummings, Josef Faller, Paul Sajda, Jean M Vettel
\textit{Objective.} Steady-State Visual Evoked Potentials (SSVEPs) are neural oscillations from the parietal and occipital regions of the brain that are evoked from flickering visual stimuli. SSVEPs are robust signals measurable in the electroencephalogram (EEG) and are commonly used in brain-computer interfaces (BCIs). However, methods for high-accuracy decoding of SSVEPs usually require hand-crafted approaches that leverage domain-specific knowledge of the stimulus signals, such as specific temporal frequencies in the visual stimuli and their relative spatial arrangement...
October 3, 2018: Journal of Neural Engineering
Colette Boëx, Rémi Tyrand, Judit Horvath, Vanessa Fleury, Sarvenaz Sadri, Marco Corniola, Pierre R Burkhard, Shahan Momjian
OBJECTIVE: Deep brain stimulation of the subthalamic nucleus (STN) is advocated in patients with advanced Parkinson disease. Intraoperative microelectrode recordings (MER) and stimulation or imaging are applied to confirm electrode targeting. The study objective was to evaluate which intraoperative electrophysiologic marker, MER, stimulation, or local field potentials (LFP) was the most predictive of the clinical efficacy. METHODS: Efficacy was determined with lateralized motor scores of Movement Disorders Society-Unified Parkinson's Disease Rating Scale in 36 patients (OFF-drug/ON-stimulation 1 year after surgery vs...
September 18, 2018: World Neurosurgery
Deepak Kumbhare, Viktoras Palys, Jamie Toms, Chathurika S Wickramasinghe, Kasun Amarasinghe, Milos Manic, Evan Hughes, Kathryn L Holloway
Deep brain stimulation (DBS) of nucleus basalis of Meynert (NBM) is currently being evaluated as a potential therapy to improve memory and overall cognitive function in dementia. Although, the animal literature has demonstrated robust improvement in cognitive functions, phase 1 trial results in humans have not been as clear-cut. We hypothesize that this may reflect differences in electrode location within the NBM, type and timing of stimulation, and the lack of a biomarker for determining the stimulation's effectiveness in real time...
2018: Frontiers in Neuroscience
Dan Piña-Fuentes, Jonathan C van Zijl, J Marc C van Dijk, Simon Little, Gerd Tinkhauser, D L Marinus Oterdoom, Marina A J Tijssen, Martijn Beudel
INTRODUCTION: Adaptive deep brain stimulation (aDBS) has been applied in Parkinson's disease (PD), based on the presence of brief high-amplitude beta (13-35 Hz) oscillation bursts in the subthalamic nucleus (STN), which correlate with symptom severity. Analogously, average low-frequency (LF) oscillatory power (4-12 Hz) in the internal globus pallidus (GPi) correlates with dystonic symptoms and might be a suitable physiomarker for aDBS in dystonia. Characterization of pallidal bursts could facilitate the implementation of aDBS in the GPi of PD and dystonia patients...
September 15, 2018: Neurobiology of Disease
Qian-Xing Zhuang, Guang-Ying Li, Bin Li, Chang-Zheng Zhang, Xiao-Yang Zhang, Kang Xi, Hong-Zhao Li, Jian-Jun Wang, Jing-Ning Zhu
The subthalamic nucleus (STN) is an effective therapeutic target for deep brain stimulation (DBS) for Parkinson's disease (PD) and histamine level is elevated in the basal ganglia in PD patients. However, the endogenous histaminergic modulation on STN neuronal activities and the neuronal mechanism underlying STN-DBS are unknown. Here we report that STN neuronal firing patterns are more crucial than firing rates for motor control. Histamine excited STN neurons, but paradoxically ameliorated parkinsonian motor deficits, which we attributed to regularizing firing patterns of STN neurons via HCN2 channel coupled to H2 receptor...
September 18, 2018: Journal of Clinical Investigation
Domantė Kučikienė, Rūta Praninskienė
In this article we conclude the main scientific studies into the changes in the bioelectrical brainwave activity that occur while listening to music. A brainwave spectral analysis, derived from findings of electroencephalograms, is a powerful tool to obtain deep and objective insights into the effects of music on the brain. This capacity is being investigated in various contexts. Starting with a healthy population, studies also seek to determine the impact of music in such conditions as disorders of consciousness, psychiatric diseases, and chronic conditions, as well as to further explore the role of music for rehabilitation purposes...
2018: Acta Medica Lituanica
Mahsa Malekmohammadi, Hiro Sparks, Nicholas AuYong, Andrew Hudson, Nader Pouratian
BACKGROUND/AIMS: There are reports that microelectrode recording (MER) can be performed under certain anesthetized conditions for functional confirmation of the optimal deep brain stimulation (DBS) target. However, it is generally accepted that anesthesia affects MER. Due to a potential role of local field potentials (LFPs) in DBS functional mapping, we characterized the effect of propofol on globus pallidus interna (GPi) and externa (GPe) LFPs in Parkinson disease (PD) patients. METHODS: We collected LFPs in 12 awake and anesthetized PD patients undergoing DBS implantation...
2018: Stereotactic and Functional Neurosurgery
Chioma Anidi, Johanna J O'Day, Ross W Anderson, Muhammad Furqan Afzal, Judy Syrkin-Nikolau, Anca Velisar, Helen M Bronte-Stewart
Freezing of gait (FOG) is a devastating axial motor symptom in Parkinson's disease (PD) leading to falls, institutionalization, and even death. The response of FOG to dopaminergic medication and deep brain stimulation (DBS) is complex, variable, and yet to be optimized. Fundamental gaps in the knowledge of the underlying neurobiomechanical mechanisms of FOG render this symptom one of the unsolved challenges in the treatment of PD. Subcortical neural mechanisms of gait impairment and FOG in PD are largely unknown due to the challenge of accessing deep brain circuitry and measuring neural signals in real time in freely-moving subjects...
September 6, 2018: Neurobiology of Disease
Juan L Cantalapiedra, M Soledad Domingo, Laura Domingo
The reconstruction of deep-time diversity trends is key to understanding current and future species richness. Studies that statistically evaluate potential factors affecting paleodiversity have focused on continental and global, clade-wide datasets, and thus we ignore how community species richness build-up to generate large-scale patterns over geological timescales. If community diversity is shaped by biotic interactions and continental and global diversities are governed by abiotic events, which are the modulators of diversity in subcontinental regions? To address this question, we model Iberian mammalian species richness over 13 million years (15 to 2 Ma) using exhaustive fossil evidence for subcontinental species' ecomorphology, environmental context, and biogeographic affinities, and quantitatively evaluate their impact on species richness...
September 7, 2018: Scientific Reports
Danil Tyulmankov, Peter A Tass, Hemant Bokil
Pathological synchronization in the basal ganglia network has been considered an important component of Parkinson's disease pathophysiology. An established treatment for some patients with Parkinson's disease is deep brain stimulation, in which a tonic high-frequency pulse train is delivered to target regions of the brain. In recent years, a novel neuromodulation paradigm called coordinated reset stimulation has been proposed, which aims to reverse the pathological synchrony by sequentially delivering short high-frequency bursts to distinct sub-regions of the pathologically synchronized network, with an average intra-burst interval for each sub-region corresponding to period of the pathological oscillation...
2018: PloS One
Linda K Friedman, Joann P Wongvravit
Anticonvulsant effects of cannabidiol (CBD), a nonpsychoactive cannabinoid, have not been investigated in the juvenile brain. We hypothesized that CBD would attenuate epileptiform activity at an age when the brain first becomes vulnerable to neurotoxicity and social/cognitive impairments. To induce seizures, kainic acid (KA) was injected either into the hippocampus (KAih) or systemically (KAip) on postnatal (P) day 20. CBD was coadministered (KA + CBDih, KA + CBDip) or injected 30 minutes postseizure onset (KA/CBDih, KA/CBDip)...
October 1, 2018: Journal of Neuropathology and Experimental Neurology
Herut Uzan, Shira Sardi, Amir Goldental, Roni Vardi, Ido Kanter
Experimental evidence recently indicated that neural networks can learn in a different manner than was previously assumed, using adaptive nodes instead of adaptive links. Consequently, links to a node undergo the same adaptation, resulting in cooperative nonlinear dynamics with oscillating effective link weights. Here we show that the biological reality of stationary log-normal distribution of effective link weights in neural networks is a result of such adaptive nodes, although each effective link weight varies significantly in time...
August 30, 2018: Scientific Reports
Ayda Ghahremani, Adam R Aron, Kaviraja Udupa, Utpal Saha, Duemani Reddy, William D Hutchison, Suneil K Kalia, Mojgan Hodaie, Andres M Lozano, Robert Chen
OBJECTIVE: Many lines of evidence suggest that response conflict recruits brain regions in the cortical-basal ganglia system. Within the basal ganglia, deep brain recordings from the subthalamic nucleus (STN) have shown that conflict triggers a transient increase in low-frequency oscillations (LFOs; 2-8Hz). Here, we deployed a new method of delivering short trains of event-related deep brain stimulation (DBS) to the STN to test the causal role of the STN and its associated circuits in conflict-related processing...
October 2018: Annals of Neurology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"