Read by QxMD icon Read

Inhibitory neurons

Rodrigo F O Pena, Sebastian Vellmer, Davide Bernardi, Antonio C Roque, Benjamin Lindner
Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations) and it is generally not well-understood how these dependencies come about...
2018: Frontiers in Computational Neuroscience
Daniel Pensold, Geraldine Zimmer
The correct establishment of inhibitory circuits is crucial for cortical functionality and defects during the development of γ-aminobutyric acid-expressing cortical interneurons contribute to the pathophysiology of psychiatric disorders. A critical developmental step is the migration of cortical interneurons from their site of origin within the subpallium to the cerebral cortex, orchestrated by intrinsic and extrinsic signals. In addition to genetic networks, epigenetic mechanisms such as DNA methylation by DNA methyltransferases (DNMTs) are suggested to drive stage-specific gene expression underlying developmental processes...
2018: Journal of Experimental Neuroscience
Sonia Torres-Sanchez, Gisela Borges, Juan A Mico, Esther Berrocoso
Tapentadol is an analgesic that acts as an agonist of mu-opioid receptors (MOR) and that inhibits noradrenaline reuptake. Data from healthy rats show that tapentadol inhibits neuronal activity in the locus coeruleus (LC), a nucleus regulated by both the noradrenergic and opioid systems. Thus, we set out to investigate the effect of tapentadol on LC activity in streptozotocin (STZ)-induced diabetic rats, a model of diabetic polyneuropathy, by analyzing single-unit extracellular recordings of LC neurons. Four weeks after inducing diabetes, tapentadol dose-response curves were obtained from animals pre-treated with RX821002 or naloxone (alpha2-adrenoceptors and opioid receptors antagonists, respectively)...
March 15, 2018: Neuropharmacology
Jadwiga Spyrka, Grzegorz Hess
The consequences of stress depend on characteristics of the stressor, including the duration of exposure, severity, and predictability. Exposure of mice to repeated neck restraint has been shown to bidirectionally modulate the potential for long-term potentiation (LTP) in the dentate gyrus (DG) in a manner dependent on the number of restraint repetitions, but the influence of repeated brief neck restraint on electrophysiology of single DG neurons has not yet been investigated. Here, we aimed at finding the effects of 1, 3, 7, 14, or 21 daily neck restraint sessions lasting 10 minutes on electrophysiological characteristics of DG granule cells as well as excitatory and inhibitory synaptic inputs to these neurons...
March 15, 2018: Neuroscience
Sheng Peng, Hong-Zhu Yan, Pei-Rong Liu, Xiao-Wei Shi, Chun-Liang Liu, Qi Liu, Yu Zhang
BACKGROUND/AIMS: Sevoflurane, a commonly used volatile anesthetic, recently has been found has neurotoxicity in the central nervous system of neonatal rodents. This study aimed to reveal whether phosphodiesterase 4 (PDE-4) inhibitor roflumilast has protective functions in sevoflurane-induced nerve damage. METHODS: Hippocampal neurons were isolated from juvenile rats, and were exposed to sevoflurane with or without roflumilast treatment. Cell viability and apoptosis were respectively assessed by CCK-8 and flow cytometry...
March 13, 2018: Cellular Physiology and Biochemistry
Larisa V Lysenko, Jeesun Kim, Francisco Madamba, Anna A Tyrtyshnaia, Aarti Ruparelia, Alexander M Kleschevnikov
Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications...
March 14, 2018: Neurobiology of Disease
Marietta Zita Poles, Nikolett Bódi, Mária Bagyánszki, Éva Fekete, András Tamás Mészáros, Gabriella Varga, Szilárd Szűcs, Anna Nászai, Liliána Kiss, Andrey V Kozlov, Mihály Boros, József Kaszaki
Our aim was to characterize the main components of the nitrosative response with quantitative changes of the nitrergic myenteric neurons in adjacent intestinal segments after transient superior mesenteric artery occlusion. We also tested the hypothesis that exogenous methane may modulate the evolution of nitroxidation by influencing xanthine oxidoreductase (XOR) activity. The microcirculatory consequences of a 50min ischemia or ischemia-reperfusion were investigated in anesthetized rats (n=124) inhaling normoxic air with or without 2...
March 14, 2018: Free Radical Biology & Medicine
F S Borges, E L Lameu, K C Iarosz, P R Protachevicz, I L Caldas, R L Viana, E E N Macau, A M Batista, M S Baptista
The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by which nonadjacent neurons do "understand" each other (positive mutual information), however, this exchange of information is not capable of causing effect (zero transfer entropy)...
February 2018: Physical Review. E
Peyton W Weems, Michael N Lehman, Lique M Coolen, Robert L Goodman
Work over the last 15 years on the control of pulsatile LH secretion has focused largely on a set of neurons in the arcuate nucleus (ARC) that contains two stimulatory neuropeptides, critical for fertility in humans (kisspeptin and neurokinin B (NKB)) and the inhibitory endogenous opioid peptide (EOP), dynorphin, and are now known as KNDy (kisspeptin-NKB-dynorphin) neurons. In this review, we consider the role of each of the KNDy peptides in the generation of GnRH pulses and the negative feedback actions of ovarian steroids, with an emphasis on NKB and dynorphin...
2018: Vitamins and Hormones
Richard Lindqvist, Chaitanya Kurhade, Jonathan D Gilthorpe, Anna K Överby
BACKGROUND: Flaviviruses are a group of diverse and emerging arboviruses and an immense global health problem. A number of flaviviruses are neurotropic, causing severe encephalitis and even death. Type I interferons (IFNs) are the first line of defense of the innate immune system against flavivirus infection. IFNs elicit the concerted action of numerous interferon-stimulated genes (ISGs) to restrict both virus infection and replication. Viperin (virus-inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) is an ISG with broad-spectrum antiviral activity against multiple flaviviruses in vitro...
March 15, 2018: Journal of Neuroinflammation
Oriane Blanquie, Frank Bradke
Recent years have seen cytoskeleton dynamics emerging as a key player in axon regeneration. The cytoskeleton, in particular microtubules and actin, ensures the growth of neuronal processes and maintains the singular, highly polarized shape of neurons. Following injury, adult central axons are tipped by a dystrophic structure, the retraction bulb, which prevents their regeneration. Abnormal cytoskeleton dynamics are responsible for the formation of this growth-incompetent structure but pharmacologically modulating cytoskeleton dynamics of injured axons can transform this structure into a growth-competent growth cone...
March 12, 2018: Current Opinion in Neurobiology
Tao Tan, Wei Wang, Haitao Xu, Zhilin Huang, Yu Tian Wang, Zhifang Dong
Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown...
2018: Frontiers in Cellular Neuroscience
Eduardo F Gallo, Jozsef Meszaros, Jeremy D Sherman, Muhammad O Chohan, Eric Teboul, Claire S Choi, Holly Moore, Jonathan A Javitch, Christoph Kellendonk
Dopamine D2 receptors (D2Rs) in the nucleus accumbens (NAc) regulate motivated behavior, but the underlying neurobiological mechanisms remain unresolved. Here, we show that selective upregulation of D2Rs in the indirect pathway of the adult NAc enhances the willingness to work for food. Mechanistic studies in brain slices reveal that D2R upregulation attenuates inhibitory transmission at two main output projections of the indirect pathway, the classical long-range projections to the ventral pallidum (VP), as well as local collaterals to direct pathway medium spiny neurons...
March 14, 2018: Nature Communications
Yu-Chen Lu, Yu-Jun Wang, Bin Lu, Ming Chen, Ping Zheng, Jing-Gen Liu
Itch is an unpleasant sensation that initiates scratching behavior. Itch-scratch reaction is a complex phenomenon whose occurrence implicates supraspinal structures required for regulation of sensory, emotional, cognitive, and motivational aspects. However, the central mechanisms underlying the processing of itch and the interplay of the supraspinal regions and spinal cord in regulating itch-scratch processes are poorly understood. Here, we have identified that the neural projections from anterior cingulate cortex (ACC) to dorsal medial striatum (DMS) constitute a critical circuit element for regulating itch-related behaviors in the brain of male C57BL/6J mice...
March 14, 2018: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Charline Kambrun, Olivier Roca-Lapirot, Chiara Salio, Marc Landry, Aziz Moqrich, Yves Le Feuvre
C-low-threshold mechanoreceptors (C-LTMRs) are sensory neurons that, beyond conveying pleasant touch, modulate nociceptive transmission within the spinal cord. However, pain alleviation by C-LTMRs remains poorly understood. Here, we show that the C-LTMR-derived TAFA4 chemokine induces a reinforcement of inhibitory synaptic transmission within spinal networks, which consequently depresses local excitatory synapses and impairs synaptic transmission from high-threshold C-fibers. In animals with inflammation induced by Freund's complete adjuvant, TAFA4 decreases the noxious stimulus-induced neuronal responses recorded in vivo and alleviates mechanical pain...
March 13, 2018: Cell Reports
Satoshi Kuroki, Takamasa Yoshida, Hidekazu Tsutsui, Mizuho Iwama, Reiko Ando, Takayuki Michikawa, Atsushi Miyawaki, Toshio Ohshima, Shigeyoshi Itohara
Multisensory integration (MSI) is a fundamental emergent property of the mammalian brain. During MSI, perceptual information encoded in patterned activity is processed in multimodal association cortex. The systems-level neuronal dynamics that coordinate MSI, however, are unknown. Here, we demonstrate intrinsic hub-like network activity in the association cortex that regulates MSI. We engineered calcium reporter mouse lines based on the fluorescence resonance energy transfer sensor yellow cameleon (YC2.60) expressed in excitatory or inhibitory neurons...
March 13, 2018: Cell Reports
Juan R Martinez-Galan, Ana Verdejo, Elena Caminos
Disturbances in calcium homeostasis due to canonical transient receptor potential (TRPC) and/or store-operated calcium (SOC) channels can play a key role in a large number of brain disorders. TRPC channels are plasma membrane cation channels included in the transient receptor potential (TRP) superfamily. The most widely distributed member of the TRPC subfamily in the brain is TRPC1, which is frequently linked to group I metabotropic glutamate receptors (mGluRs) and to the components of SOC channels. Proposing TRPC/SOC channels as a therapeutic target in neurological diseases previously requires a detailed knowledge of the distribution of such molecules in the brain...
2018: Frontiers in Neuroanatomy
Jian Yin, Ran Li, Wenchao Liu, Yunchang Chen, Xin Zhang, Xifeng Li, Xuying He, Chuanzhi Duan
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) can lead to inflammation and neuronal dysfunction. There is a need for effective strategies to mitigate these effects and improve the outcome of patients who experience SAH. The mRNA-destabilizing protein tristetraprolin (TTP) is an anti-inflammatory factor that induces the decay of cytokine transcripts and has been implicated in diseases such as glioma. However, the mechanism of action of TTP in EBI after SAH is unclear. The present study investigated the effects of TTP regulation via phosphorylation in a rat model of SAH by protein phosphatase (PP)2A, which is a pleiotropic enzyme complex with multiple substrate phospho-proteins...
2018: Frontiers in Neuroscience
Wankun L Li, Monica W Chu, An Wu, Yusuke Suzuki, Itaru Imayoshi, Takaki Komiyama
The rodent olfactory bulb incorporates thousands of newly generated inhibitory neurons daily throughout adulthood, but the role of adult neurogenesis in olfactory processing is not fully understood. Here we adopted a genetic method to inducibly suppress adult neurogenesis and investigated its effect on behavior and bulbar activity. Mice without young adult-born neurons (ABNs) showed normal ability in discriminating very different odorants but were impaired in fine discrimination. Furthermore, two-photon calcium imaging of mitral cells (MCs) revealed that the ensemble odor representations of similar odorants were more ambiguous in the ablation animals...
March 13, 2018: ELife
Li-Min Mao, Hunter J Faris, John Q Wang
The Src family kinase (SFK) is a subfamily of non-receptor tyrosine kinases. SFK members, Src and especially Fyn, are expressed in the striatum. These SFK members are involved in the regulation of neuronal and synaptic activities and are linked to the pathogenesis of a variety of neuropsychiatric and neurodegenerative disorders. Given the fact that muscarinic acetylcholine (mACh) receptors are highly expressed in striatal neurons and are critical for the regulation of striatal function, we investigated the role of mACh receptors in the regulation of SFKs in the adult rat striatum in vivo...
March 12, 2018: Journal of Molecular Neuroscience: MN
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"