Read by QxMD icon Read

Pyramidal neuron

Susanne Falkner, Sofia Grade, Leda Dimou, Karl-Klaus Conzelmann, Tobias Bonhoeffer, Magdalena Götz, Mark Hübener
The ability of the adult mammalian brain to compensate for neuronal loss caused by injury or disease is very limited. Transplantation aims to replace lost neurons, but the extent to which new neurons can integrate into existing circuits is unknown. Here, using chronic in vivo two-photon imaging, we show that embryonic neurons transplanted into the visual cortex of adult mice mature into bona fide pyramidal cells with selective pruning of basal dendrites, achieving adult-like densities of dendritic spines and axonal boutons within 4-8 weeks...
October 26, 2016: Nature
Song Cai, Chuwen Ling, Jun Lu, Songwei Duan, Yingzhao Wang, Huining Zhu, Ruibang Lin, Liang Chen, Xingchang Pan, Muyi Cai, Huaiyu Gu
A primary pathogeny of epilepsy is excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs). To find potential molecules to inhibit AMPARs, high-throughput screening was performed in a library of tetrapeptides in silico. Computational results suggest that some tetrapeptides bind stably to the AMPAR. We aligned these sequences of tetrapeptide candidates with those from in vitro digestion of the trout skin protein. Among salmon-derived products, Glu-Gly-Ala-Arg (EGAR) showed a high biological affinity toward AMPAR when tested in silico...
October 25, 2016: Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics
Petrina Yau-Pok Lau, Linda Katona, Peter Saghy, Kathryn Newton, Peter Somogyi, Karri P Lamsa
Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats...
October 25, 2016: Brain Structure & Function
Takeshi Uemura, Takuma Mori, Taiga Kurihara, Shiori Kawase, Rie Koike, Michiru Satoga, Xueshan Cao, Xue Li, Toru Yanagawa, Takayuki Sakurai, Takayuki Shindo, Katsuhiko Tabuchi
Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons...
October 26, 2016: Scientific Reports
Nicholas P Vyleta, Carolina Borges-Merjane, Peter Jonas
Mossy fiber synapses on CA3 pyramidal cells are 'conditional detonators' that reliably discharge postsynaptic targets. The 'conditional' nature implies that burst activity in dentate gyrus granule cells is required for detonation. Whether single unitary excitatory postsynaptic potentials (EPSPs) trigger spikes in CA3 neurons remains unknown. Mossy fiber synapses exhibit both pronounced short-term facilitation and uniquely large post-tetanic potentiation (PTP). We tested whether PTP could convert mossy fiber synapses from subdetonator into detonator mode, using a recently developed method to selectively and noninvasively stimulate individual presynaptic terminals in rat brain slices...
October 25, 2016: ELife
S Moriguchi, T Ishizuka, Y Yabuki, N Shioda, Y Sasaki, H Tagashira, H Yawo, J Z Yeh, H Sakagami, T Narahashi, K Fukunaga
Here, we report a novel target of the drug memantine, ATP-sensitive K(+) (KATP) channels, potentially relevant to memory improvement. We confirmed that memantine antagonizes memory impairment in Alzheimer's model APP23 mice. Memantine increased CaMKII activity in the APP23 mouse hippocampus, and memantine-induced enhancement of hippocampal long-term potentiation (LTP) and CaMKII activity was totally abolished by treatment with pinacidil, a specific opener of KATP channels. Memantine also inhibited Kir6.1 and Kir6...
October 25, 2016: Molecular Psychiatry
Evelin L Schaeffer, Sergio Catanozi, Mark J West, Wagner F Gattaz
Pyramidal neuron loss in the hippocampal CA1 region is a very early hallmark of Alzheimer disease (AD). Lithium might be a therapeutic strategy for AD due to its neuroprotective and neurotrophic properties. This study used modern stereological techniques to investigate possible CA1 pyramidal neuron loss in 11-month-old triple transgenic AD (3xTg-AD) mice, and also the effects of therapeutic and subtherapeutic lithium doses on the number and density of CA1 pyramidal neurons and volume of CA1 pyramidal layer in 3xTg-AD and wild-type mice treated from 3 to 11 months of age...
October 21, 2016: Annals of Anatomy, Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft
Haruo Nishijima, Tatsuya Ueno, Shinya Ueno, Fumiaki Mori, Yasuo Miki, Masahiko Tomiyama
Long-term administration of levodopa for Parkinson's disease is associated with various motor and non-motor complications. We examined the dendritic spine morphology of pyramidal tract-type neurons in the prefrontal cortex in a rat model of Parkinson's disease chronically treated with levodopa. Dendritic spines showed decreased density and increased average volume after dopamine denervation and levodopa treatment. These morphologic alterations suggest that the prefrontal neurons may maladaptively respond to excitatory input, which might be one of the mechanisms underlying various levodopa-induced complications in patients with Parkinson's disease...
October 20, 2016: Neuroscience Research
Angélica Torres-Berrío, Juan Pablo Lopez, Rosemary C Bagot, Dominique Nouel, Gregory Dal Bo, Santiago Cuesta, Lei Zhu, Colleen Manitt, Conrad Eng, Helen M Cooper, Kai-Florian Storch, Gustavo Turecki, Eric J Nestler, Cecilia Flores
BACKGROUD: Variations in the expression of the Netrin-1 guidance cue receptor DCC (deleted in colorectal cancer) appear to confer resilience or susceptibility to psychopathologies involving prefrontal cortex (PFC) dysfunction. METHODS: With the use of postmortem brain tissue, mouse models of defeat stress, and in vitro analysis, we assessed microRNA (miRNA) regulation of DCC and whether changes in DCC levels in the PFC lead to vulnerability to depression-like behaviors...
August 18, 2016: Biological Psychiatry
Tae-Kyeong Lee, Joon Ha Park, Ji Hyeon Ahn, Myoung Cheol Shin, Jun Hwi Cho, Eun Joo Bae, Young-Myeong Kim, Moo-Ho Won, Choong-Hyun Lee
Duloxetine (DXT), a serotonin/norepinephrine reuptake inhibitor, is widely used for the treatment of major depressive disorders. In the present study, we investigated the neuroprotective effect of pre-treated DXT in the hippocampal CA1 region following transient global cerebral ischemia. Pre-treatment with 40mg/kg DXT protected pyramidal neurons in the CA1 region from ischemia-reperfusion injury. In addition, pre-treatment with DXT reduced ischemia-induced activations of microglia and astrocytes in the ischemic CA1 region...
November 15, 2016: Journal of the Neurological Sciences
Wei Bu, Huiling Ren, Yunping Deng, Nobel Del Mar, Natalie M Guley, Bob M Moore, Marcia G Honig, Anton Reiner
We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state...
2016: Frontiers in Neuroscience
Chiung-Mei Chen, I-Cheng Chen, Ying-Lin Chen, Te-Hsien Lin, Wan-Ling Chen, Chih-Ying Chao, Yih-Ru Wu, Yeah-Ting Lu, Cheng-Yu Lee, Hong-Chi Chien, Ting-Shou Chen, Guey-Jen Lee-Chen, Chi-Mei Lee
BACKGROUND: The F-box protein 7 (FBXO7) mutations have been identified in families with early-onset parkinsonism and pyramidal tract signs, and designated as PARK15. In addition, FBXO7 mutations were found in typical and young onset Parkinson's disease (PD). Evidence has also shown that FBXO7 plays an important role in the development of dopaminergic neurons and increased stability and overexpression of FBXO7 may be beneficial to PD. PURPOSE: We screened extracts of medicinal herbs to enhance FBXO7 expression for neuroprotection in MPP(+)-treated cells...
November 15, 2016: Phytomedicine: International Journal of Phytotherapy and Phytopharmacology
Marta Gómez-Galán, Teresa Femenía, Elin Åberg, Lisette Graae, Ann Van Eeckhaut, Ilse Smolders, Stefan Brené, Maria Lindskog
Stress, such as social isolation, is a well-known risk factor for depression, most probably in combination with predisposing genetic factors. Physical exercise on the other hand, is depicted as a wonder-treatment that makes you healthier, happier and live longer. However, the published results on the effects of exercise are ambiguous, especially when it comes to neuropsychiatric disorders. Here we combine a paradigm of social isolation with a genetic rat model of depression, the Flinders Sensitive Line (FSL), already known to have glutamatergic synaptic alterations...
2016: PloS One
Jangjin Kim, Mary E Goldsberry, Thomas C Harmon, John H Freeman
Hippocampal development is thought to play a crucial role in the emergence of many forms of learning and memory, but ontogenetic changes in hippocampal activity during learning have not been examined thoroughly. We examined the ontogeny of hippocampal function by recording theta and single neuron activity from the dorsal hippocampal CA1 area while rat pups were trained in associative learning. Three different age groups [postnatal days (P)17-19, P21-23, and P24-26] were trained over six sessions using a tone conditioned stimulus (CS) and a periorbital stimulation unconditioned stimulus (US)...
2016: PloS One
Samuel A Neymotin, Benjamin A Suter, Salvador Dura-Bernal, Gordon M G Shepherd, Michele Migliore, William W Lytton
Corticospinal neurons (SPI), thick-tufted pyramidal neurons in motor cortex layer 5B that project caudally via the medullary pyramids, display distinct class-specific electrophysiological properties in vitro: strong sag with hyperpolarization, lack of adaptation, and a nearly linear frequency-current (FI) relationship. We used our electrophysiological data to produce a pair of large archives of SPI neuron computer models in two model classes: 1. Detailed models with full reconstruction; 2. Simplified models with 6 compartments...
October 19, 2016: Journal of Neurophysiology
Claudia Kathe, Thomas Haynes Hutson, Stephen Brendan McMahon, Lawrence David Falcon Moon
Brain and spinal injury reduce mobility and often impair sensorimotor processing in the spinal cord leading to spasticity. Here, we establish that complete transection of corticospinal pathways in the pyramids impairs locomotion and leads to increased spasms and excessive mono- and polysynaptic low threshold spinal reflexes in rats. Treatment of affected forelimb muscles with an adeno-associated viral vector (AAV) encoding human Neurotrophin-3 at a clinically-feasible time-point after injury reduced spasticity...
October 19, 2016: ELife
George S Vidal, Maja Djurisic, Kiana Brown, Richard W Sapp, Carla J Shatz
Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood...
September 2016: ENeuro
P-M Martin, R E Stanley, A P Ross, A E Freitas, C E Moyer, A C Brumback, J Iafrati, K S Stapornwongkul, S Dominguez, S Kivimäe, K A Mulligan, M Pirooznia, W R McCombie, J B Potash, P P Zandi, S M Purcell, S J Sanders, Y Zuo, V S Sohal, B N R Cheyette
Mice lacking DIX domain containing-1 (DIXDC1), an intracellular Wnt/β-catenin signal pathway protein, have abnormal measures of anxiety, depression and social behavior. Pyramidal neurons in these animals' brains have reduced dendritic spines and glutamatergic synapses. Treatment with lithium or a glycogen synthase kinase-3 (GSK3) inhibitor corrects behavioral and neurodevelopmental phenotypes in these animals. Analysis of DIXDC1 in over 9000 cases of autism, bipolar disorder and schizophrenia reveals higher rates of rare inherited sequence-disrupting single-nucleotide variants (SNVs) in these individuals compared with psychiatrically unaffected controls...
October 18, 2016: Molecular Psychiatry
K M Naga Srinivas Nadella, Hana Roš, Chiara Baragli, Victoria A Griffiths, George Konstantinou, Theo Koimtzis, Geoffrey J Evans, Paul A Kirkby, R Angus Silver
Understanding how neural circuits process information requires rapid measurements of activity from identified neurons distributed in 3D space. Here we describe an acousto-optic lens two-photon microscope that performs high-speed focusing and line scanning within a volume spanning hundreds of micrometers. We demonstrate its random-access functionality by selectively imaging cerebellar interneurons sparsely distributed in 3D space and by simultaneously recording from the soma, proximal and distal dendrites of neocortical pyramidal cells in awake behaving mice...
October 17, 2016: Nature Methods
Keisuke Kaneko, Yuko Koyanagi, Yoshiyuki Oi, Masayuki Kobayashi
Propofol is a major intravenous anesthetic that facilitates GABAA receptor-mediated inhibitory synaptic currents and modulates Ih, K(+), and voltage-gated Na(+) currents. This propofol-induced modulation of ionic currents changes intrinsic membrane properties and repetitive spike firing in cortical pyramidal neurons. However, it has been unknown whether propofol modulates these electrophysiological properties in GABAergic neurons, which express these ion channels at different levels. This study examined whether pyramidal and GABAergic neuronal properties are differentially modulated by propofol in the rat insular cortical slice preparation...
October 13, 2016: Neuroscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"