Read by QxMD icon Read

Retrosplenial cortex

Kiriana K Cowansage
Studies of learning and memory have made significant advances in characterizing the mechanisms of single memories, formed when surprising and unpredictable events trigger synaptic modifications in response to tightly timed coincidental cues. Yet outside the laboratory setting, few natural experiences are wholly unique, and much of our behavior is shaped progressively through the interactions of perceived experiences, recently formed memories and distant acquired knowledge. Despite the necessity of these memory dynamics, relatively little is known about how previously established associations are accessed, updated, and applied to inform new learning at the appropriate moments in time...
October 2018: Behavioral Neuroscience
Andrew J D Nelson, Anna L Powell, Lisa Kinnavane, John P Aggleton
The present study examined the effects of excitotoxic lesions in 2 closely related structures, the anterior thalamic nuclei and the retrosplenial cortex, on latent inhibition. Latent inhibition occurs when nonreinforced preexposure to a stimulus retards the subsequent acquisition of conditioned responding to that stimulus. Latent inhibition was assessed in a within-subject procedure with auditory stimuli and food reinforcement. As expected, sham-operated animals were slower to acquire conditioned responding to a stimulus that had previously been experienced without consequence, relative to a non-preexposed stimulus...
October 2018: Behavioral Neuroscience
Andrew J D Nelson, Emma L Hindley, Seralynne D Vann, John P Aggleton
The rodent retrosplenial cortex is known to be vital for spatial cognition, but evidence has also pointed to a role in processing nonspatial information. It has been suggested that the retrosplenial cortex may serve as a site of integration of incoming sensory information. To examine this proposal, the current set of experiments assessed the impact of excitotoxic lesions in the retrosplenial cortex on two behavioral tasks that tax animals' ability to process multiple and overlapping environmental stimuli. In Experiment 1, rats with retrosplenial lesions acquired a negative patterning discrimination, a form of configural learning that can be solved only by learning the conjunction of cues...
October 2018: Behavioral Neuroscience
Elizabeth R Chrastil, Sean M Tobyne, Rachel K Nauer, Allen E Chang, Chantal E Stern
Interest in the retrosplenial cortex (RSC) has surged in recent years, as this region has been implicated in a range of cognitive processes. Previously reported anatomical and functional definitions of the human RSC encompass a larger area than expected from underlying cytoarchitectonic profiles. Here, we used a large-scale, unbiased, and data-driven approach combining functional MRI meta-analysis and resting-state functional connectivity (rsFC) methods to test the nature of this heterogeneity. The automated toolset Neurosynth was used to conduct meta-analyses in order to (a) identify heterogeneous areas in the retrosplenial region (RS region) associated with one or more cognitive domains, and (b) contrast the activation profiles related to these domains...
October 2018: Behavioral Neuroscience
David J Bucci, Chantal E Stern
This special issue on the cognitive functions of the retrosplenial cortex highlights progress that has been made in recent years in understanding the anatomy and function of the retrosplenial cortex in both animals and humans. The articles in this issue of Behavioral Neuroscience use a number of different approaches that together provide an up-to-date account of recent progress in understanding how the retrosplenial cortex contributes to cognition, with an emphasis on its functional role in spatial navigation and learning and memory...
October 2018: Behavioral Neuroscience
Jennifer D Whitesell, Alex R Buckley, Joseph E Knox, Leonard Kuan, Nile Graddis, Andrew Pelos, Alice Mukora, Wayne Wakeman, Phillip Bohn, Anh Ho, Karla E Hirokawa, Julie A Harris
A variety of Alzheimer's disease (AD) mouse models overexpress mutant forms of human amyloid precursor protein (APP), producing high levels of amyloid β (Aβ) and forming plaques. However, the degree to which these models mimic spatiotemporal patterns of Aβ deposition in brains of AD patients is unknown. Here, we mapped the spatial distribution of Aβ plaques across ages in three APP-overexpression mouse lines (APP/PS1, Tg2576, hAPP-J20) using in vivo labeling with methoxy-X04, high throughput whole brain imaging, and an automated informatics pipeline...
October 12, 2018: Journal of Comparative Neurology
Francesca Benuzzi, Daniela Ballotta, Giacomo Handjaras, Andrea Leo, Paolo Papale, Michaela Zucchelli, Maria Angela Molinari, Fausta Lui, Luca Cecchetti, Emiliano Ricciardi, Giuseppe Sartori, Pietro Pietrini, Paolo Frigio Nichelli
"Autobiographical memory" (AM) refers to remote memories from one's own life. Previous neuroimaging studies have highlighted that voluntary retrieval processes from AM involve different forms of memory and cognitive functions. Thus, a complex and widespread brain functional network has been found to support AM. The present functional magnetic resonance imaging (fMRI) study used a multivariate approach to determine whether neural activity within the AM circuit would recognize memories of real autobiographical events, and to evaluate individual differences in the recruitment of this network...
2018: Frontiers in Behavioral Neuroscience
Brian Zingg, Hong-Wei Dong, Huizhong Whit Tao, Li I Zhang
Progress in determining the precise organization and function of the claustrum (CLA) has been hindered by the difficulty in reliably targeting these neurons. To overcome this, we used a projection-based targeting strategy to selectively label CLA principal neurons. Combined with adeno-associated virus (AAV) and monosynaptic rabies tracing techniques, we systematically examined the pre-synaptic input and axonal output of this structure. We found that CLA neurons projecting to retrosplenial cortex (RSP) collateralize extensively to innervate a variety of higher-order cortical regions...
September 25, 2018: Journal of Comparative Neurology
Muhuo Ji, Jiangyan Xia, Xiaohui Tang, Jianjun Yang
Memory enhancement and memory decline are two opposing cognitive performances commonly observed in clinical practice, yet the neural mechanisms underlying these two different phenomena remain poorly understood. Accumulating evidence has demonstrated that the default-mode network (DMN) is implicated in diverse cognitive, social, and affective processes. In the present study, we used the retrosplenial cortex as a seed region to study the functional connectivity within the DMN in two animal models with opposing episodic memories, of which memory enhancement was induced by footshocks to mimic posttraumatic stress disorder (PTSD) and memory decline was induced by lipopolysaccharide (LPS) challenge to mimic sepsis-associated encephalopathy (SAE)...
2018: PloS One
Anna S Mitchell, Rafal Czajkowski, Ningyu Zhang, Kate Jeffery, Andrew J D Nelson
Retrosplenial cortex is a region within the posterior neocortical system, heavily interconnected with an array of brain networks, both cortical and subcortical, that is, engaged by a myriad of cognitive tasks. Although there is no consensus as to its precise function, evidence from both human and animal studies clearly points to a role in spatial cognition. However, the spatial processing impairments that follow retrosplenial cortex damage are not straightforward to characterise, leading to difficulties in defining the exact nature of its role...
2018: Brain and Neuroscience Advances
Tao Wen, Xiufeng Zhang, Shengxiang Liang, Zuanfang Li, Xuemei Xing, Weilin Liu, Jing Tao
BACKGROUND: To evaluate whether electroacupuncture (EA) at Baihui (DU20) and Shenting (DU24) acupoints could improve cognitive function and enhance spontaneous low-frequency brain activity in rats with ischemic stroke. METHODS: Total 36 rats were randomly divided into 3 groups-the sham surgery (Sham) group, the middle cerebral artery occlusion induced cognitive deficit (MICD) group, and the MICD with EA (MICD + EA) treatment group. The rats in MICD + EA group received EA treatment at DU20 and DU24 acupoints for 14 consecutive days after the surgery...
October 2018: Journal of Stroke and Cerebrovascular Diseases: the Official Journal of National Stroke Association
Kosei Goto, Nobuo Kutsuna, Akiko Yamashita, Hideki Oshima, Takeshi Suma, Atsuo Yoshino
Doublecortin (DCX)-immunoreactive (-ir) cells play important roles in adult cortical remodeling. We previously reported that DCX-ir cells decrease after transient global brain ischemia (GBI) in the cingulate cortex (Cg) of rats. In the present study, we examined the changes of DCX-ir cells from the acute to the chronic phase after GBI in rats. Transient GBI was induced by a four-vessel occlusion model as described previously. Thirty-six rats were divided into six groups: day 7 after sham operation (Group Sham+A), day 7 after 3 min GBI (Group GBI3+A), day 7 after 10 min GBI (Group GBI10+A), day 90 after sham operation (Group Sham+C), day 90 after 3 min GBI (Group GBI3+C), and day 90 after 10 min GBI (Group GBI10+C)...
2018: Advances in Experimental Medicine and Biology
Andrej Bicanski, Neil Burgess
We present a model of how neural representations of egocentric spatial experiences in parietal cortex interface with viewpoint-independent representations in medial temporal areas, via retrosplenial cortex, to enable many key aspects of spatial cognition. This account shows how previously reported neural responses (place, head-direction and grid cells, allocentric boundary- and object-vector cells, gain-field neurons) can map onto higher cognitive function in a modular way, and predicts new cell types (egocentric and head-direction-modulated boundary- and object-vector cells)...
September 4, 2018: ELife
Elizabeth R Chrastil
Retrosplenial cortex (RSC) is an important information hub in the brain and several mental disorders demonstrate RSC dysfunction, but its role is still largely unclear. Although researchers in many cognitive domains have recognized the importance of RSC, a broader synthesis of RSC function across cognitive domains is lacking. This review examines human RSC function across several cognitive domains, considering both specific cognitive functions and the RSC subregions in which that function occurs. Overall, this review found evidence for a functional gradient across the anterior-posterior axis of RSC involving several cognitive domains...
October 2018: Behavioral Neuroscience
Benjamin J Clark, Christine M Simmons, Laura E Berkowitz, Aaron A Wilber
The retrosplenial cortex is anatomically positioned to integrate sensory, motor, and visual information and is thought to have an important role in processing spatial information and guiding behavior through complex environments. Anatomical and theoretical work has argued that the retrosplenial cortex participates in spatial behavior in concert with input from the parietal cortex. Although the nature of these interactions is unknown, a central position is that the functional connectivity is hierarchical with egocentric spatial information processed in the parietal cortex and higher-level allocentric mappings generated in the retrosplenial cortex...
October 2018: Behavioral Neuroscience
Cesar A O Coelho, Tatiana L Ferreira, Juliana C Kramer-Soares, João R Sato, Maria Gabriela M Oliveira
Hippocampal damage results in profound retrograde, but no anterograde amnesia in contextual fear conditioning (CFC). Although the content learned in the latter have been discussed, alternative regions supporting CFC learning were seldom proposed and never empirically addressed. Here, we employed network analysis of pCREB expression quantified from brain slices of rats with dorsal hippocampal lesion (dHPC) after undergoing CFC session. Using inter-regional correlations of pCREB-positive nuclei between brain regions, we modelled functional networks using different thresholds...
August 2018: PLoS Computational Biology
Miguel Antonio Xavier de Lima, Marcus Vinicius C Baldo, Newton Sabino Canteras
The ventral part of the anteromedial thalamic nucleus (AMv) receives substantial inputs from hypothalamic sites that are highly responsive to a live predator or its odor trace and represents an important thalamic hub for conveying predatory threat information to the cerebral cortex. In the present study, we begin by examining the cortico-amygdalar-hippocampal projections of the main AMv cortical targets, namely, the caudal prelimbic, rostral anterior cingulate, and medial visual areas, as well as the rostral part of the ventral retrosplenial area, one of the main targets of the anterior cingulate area...
July 31, 2018: Cerebral Cortex
Susan A Rapley, Timothy C R Prickett, John C Dalrymple-Alford, Eric A Espiner
Beneficial molecular and neuroplastic changes have been demonstrated in response to environmental enrichment (EE) in laboratory animals across the lifespan. Here, we investigated whether these effects extend to C-type Natriuretic Peptide (CNP), a widely expressed neuropeptide with putative involvement in neuroprotection, neuroplasticity, anxiety, and learning and memory. We determined the CNP response in 36 young (8-9 months) and 36 aged (22-23 months) male PVGc hooded rats that were rehoused with new cage mates in either standard laboratory cages or EE for periods of 14 or 28 days...
2018: Frontiers in Behavioral Neuroscience
Hector J I Page, Kate J Jeffery
Maintaining a sense of direction is fundamental to navigation, and is achieved in the brain by a network of head direction (HD) cells, which update their signal using stable environmental landmarks. How landmarks are detected and their stability determined is still unknown. Recently we reported a new class of cells (Jacob et al., 2017), the bidirectional cells, in a brain region called retrosplenial cortex (RSC) which relays environmental sensory information to the HD system. A subset of these cells, between-compartment (BC) cells, are directionally tuned (like ordinary HD cells) but follow environmental cues in preference to the global HD signal, resulting in opposing (i...
2018: Frontiers in Cellular Neuroscience
Nicola Solari, Balázs Hangya
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies...
September 2018: European Journal of Neuroscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"