Read by QxMD icon Read


Yong Huang, Yaxuan Gao, Hao Zhou, Hongqi Sun, Jianbin Zhou, Shu Zhang
This paper investigated pyrolysis of palm kernel shell in a proposed reactor, which is characterized by internal recycling of heavy oil between a heavy oil sorption zone and pyrolysis zone. The internal recycling of heavy oil favors conversion of heavy oil to char, gas, and light oil. Compared with the product distribution from the conventional pyrolysis without heavy oil recycling, the yields of char, gas, and GC/MS detectable organic compounds increase from 34.8, 15.2, and 9.8 wt%-(dry feedstock) to 38...
October 4, 2018: Bioresource Technology
Baranitharan Paramasivam, Ramesh Kasimani, Sakthivel Rajamohan
The present research focuses on the analyzing the characteristics of bio-oil derived from intermediate pyrolysis of Aegle marmelos (AM) seed cake and its suitability for C.I. engine adaptation. Owing to the high volatile matter content of 73.69%, Aegle marmelos biomass was selected as the feedstock for this research. The intermediate pyrolysis was carried out at 600 °C in a 2-kg fixed bed type pyrolysis reactor at a heating rate of 10 °C/min and the obtained bio-oil was characterized by different analytical methods...
October 2, 2018: Environmental Science and Pollution Research International
Peng Fu, Weiming Yi, Zhihe Li, Yongjun Li
Fast pyrolysis of agricultural straw residues based on ceramic ball circulation heating was studied by using an originally developed V-shaped drop tube pyrolysis unit. The yields of bio-oil, bio-char and pyrolysis gas from these straw residues were in the range of 41-46, 26-30 and 26-29 wt%, respectively, with maize straw giving the highest bio-oil yield. A quadratic model was developed to correlate the cellulose-to-lignin-ratio (CLR) and hemicellulose-to-lignin-ratio (HLR) with bio-oil yield. For a given HLR above 1...
September 21, 2018: Bioresource Technology
Yalin Li, William A Tarpeh, Kara L Nelson, Timothy J Strathmann
Algal systems have emerged as a promising strategy for simultaneous treatment and valorization of wastewater. However, further advancement and real-world implementation are hindered by the limited knowledge on the full energetic and nutrient product potentials of such systems and the corresponding value of these products. In this work, an aqueous-based system for the conversion of wastewater-derived algae and upgrading of crude products was designed and demonstrated. Bio-oil, fuel gas, and fertilizer products were generated from algal biomass harvested from a municipal wastewater treatment facility...
September 26, 2018: Environmental Science & Technology
Ismail Cem Kantarli, Stylianos D Stefanidis, Konstantinos G Kalogiannis, Angelos A Lappas
The objective of this study was to examine the potential of poultry wastes to be used as feedstock in non-catalytic and catalytic fast pyrolysis processes, which is a continuation of our previous research on their conversion into biofuel via slow pyrolysis and hydrothermal conversion. Both poultry meal and poultry litter were examined, initially in a fixed bed bench-scale reactor using ZSM-5 and MgO as catalysts. Pyrolysis of poultry meal yielded high amounts of bio-oil, while pyrolysis of poultry litter yielded high amounts of solid residue owing to its high ash content...
September 25, 2018: Waste Management & Research
Attada Yerrayya, Dadi V Suriapparao, Upendra Natarajan, R Vinu
With an objective to improve the yield and selectivity of phenols in pyrolysis bio-oil from lignin, this study investigates the effects of mass ratio of lignin-to-susceptor and different types of susceptors (activated carbons of different particle sizes, charcoal and graphite) in microwave pyrolysis. Pyrolysis was carried out in a batch microwave reactor, and the temperature profiles at different operating conditions were captured. Increasing the mass of susceptor with respect to lignin enhanced the bio-oil yield, and maximum yield of 66 wt% with >90% selectivity to phenols was obtained with 10 g lignin:90 g activated carbon...
September 12, 2018: Bioresource Technology
P Kiran Kumar, S Vijaya Krishna, Kavita Verma, K Pooja, D Bhagawan, K Srilatha, V Himabindu
The upsurge in the concerning issues like global warming, environmental pollution and depletion of fossil fuel resources led to the thrust on third generation biofuels. Algal research has gained a lot of importance in the recent years. Effective utilization of algal biomass in a single step is necessary as it can produce Bio-oil (BO), gases and in addition to a variety of valuable products, along with nutrient recovery. Hydrothermal liquefaction technology does not require the energy intensive drying steps and is an attractive approach for the conversion of algae to liquid fuels...
September 22, 2018: Journal of Microbiological Methods
Shi-Kun Yang, Yu-Ping Xu, Pei-Gao Duan
The characterization of products produced from hydrothermal liquefaction of algal biomass is helpful to better understand the effect of different kinds of raw materials on the properties of the product fractions. The data presented in this article are related to the research article entitled "Integration of hydrothermal liquefaction and supercritical water gasification for the improvement of energy recovery from algal biomass" (Duan et al., 2018) [1]. In this data article, the compositions of gaseous products produced from hydrothermal liquefaction of eight different algae feedstocks at 350 °C for 60 min were analyzed by gas chromatography...
August 2018: Data in Brief
Xiao-Fei Wu, Qian Zhou, Ming-Fei Li, Shu-Xian Li, Jing Bian, Feng Peng
Subcritical hydrothermal liquefaction of poplar was performed at 220-280 °C, and the liquid phase produced was extracted by ethyl acetate to obtain light oil (LO), which contained LO1 (water-soluble) and LO2 (ethyl acetate-soluble). The residue was further extracted with acetone to produce heavy oil (HO) and solid residue (SR). The highest bio-oil yield of 19.88% was obtained at 260 °C. The HO produced at 260 °C had the highest content of C (69.13%) and the higher heating value was 27.97 MJ/kg. The O/C and H/C ratios of LO were higher than those of HO due to less aromatics in LO...
September 8, 2018: Bioresource Technology
Mohammed Hassan Jabal, Abdulmunem R Abdulmunem, Hussain Saad Abd
Plant oil (vegetable) has been evaluated to substitute the mineral-based lubricants due to its natural and friendly characteristics for environment. Availability of vegetable oil made it a renewable source of bio- oils. Additionally, vegetable oil based lubricants has indicated a potentials for reducing hydrocarbon emission and carbon dioxide while utilizing in the IC engines and industrial operations. In this study, the sunflower oil was investigated to study its lubricant characteristics under different loads using the four-ball tribometer and tested the exhaust emissions using a four stroke single cylinder diesel engine...
September 14, 2018: Journal of the Air & Waste Management Association
Jyotsna S Arora, Jia Wei Chew, Samir H Mushrif
Fast pyrolysis is a promising technology for the production of renewable fuels and chemicals from lignocellulosic biomass. The product distribution (bio-oil, char) and the composition of bio-oil are significantly influenced by the presence of naturally occurring alkali and alkaline-earth metals (AAEMs). In this paper, we investigate, at the molecular level, the influence of Na(I), K(I), Ca(II), and Mg(II) ions on glycosidic bond breaking reactions using density functional theory. Glycosidic bond breaking reactions are categorized as direct C-O breaking mechanisms, namely, transglycosylation, glycosylation, and ring contraction and the two-step pathways, which include the mannose pathway, dehydration, and ring opening...
September 27, 2018: Journal of Physical Chemistry. A
Yunpu Wang, Zihong Zeng, Xiaojie Tian, Leilei Dai, Ling Jiang, Shumei Zhang, Qiuhao Wu, Pingwei Wen, Guiming Fu, Yuhuan Liu, Roger Ruan
In this study, a continuous fast microwave-assisted pyrolysis system was developed to produce bio-oil, gas, and biochar from rice straw and Camellia oleifera shell. The effects of different pyrolysis temperatures (400 °C, 500 °C, and 600 °C) and feed rates (rice straw: 25, 45, and 66 g/min; C. oleifera shell: 100, 200, and 400 g/min) on bio-oil production were investigated. Experimental results showed that the yields of bio-oil (31.86 wt%) and gas (54.49 wt%) produced by the microwave-assisted pyrolysis of rice straw increased with increasing temperature...
December 2018: Bioresource Technology
Ziwei Cheng, Basudeb Saha, Dionisios G Vlachos
Valorization of humins, the polymeric byproducts formed during the acid-catalyzed production of HMF (5-hydroxymethylfurfural) or furfural, is necessary to improve process economics and make biorefineries viable. We report the one-step catalytic hydrotreatment of humins in methanol to humin oil containing fully or partially deoxygenated compounds. First, we compare four commercial noble-metal catalysts (Ru/C, Rh/C, Pt/C, and Pd/C). Aromatic hydrocarbons, phenols, and esters are the main products detected by GC...
August 27, 2018: ChemSusChem
Anand Mohan Verma, Nanda Kishore
Excessive amounts of oxy-functional groups in unprocessed bio-oil vitiate its quality as fuel; therefore, it has to be channelized to upgrading processes, and catalytic hydrodeoxygenation is one of the most suitable routes for the upgrading of crude bio-oil. In this computational work, catalytic hydrodeoxygenation (HDO) of guaiacol, which is an important phenolic compound of crude bio-oil, has been carried out using density functional theory (DFT) over a Pd(111) catalyst. The Pd(111) catalyst surface does not endorse direct eliminations of functional groups of guaiacol; however, it is found to perform excellently in stepwise dehydrogenation reactions of oxy-functionals of guaiacol according to present DFT results...
August 27, 2018: Journal of Molecular Modeling
Zhiwen Chen, Mingfeng Wang, Enchen Jiang, Donghai Wang, Ke Zhang, Yongzhi Ren, Yang Jiang
Pyrolysis, one of the most promising thermal conversion technologies for biomass conversion, can decompose biomass into solid bio-char, liquid bio-oil, and combustible gas to meet different energy needs. However, pyrolysis efficiency and product quality are not as good as expected when raw biomass is used owing to the properties of raw biomass (e.g., high moisture, oxygen, and alkali metal contents). Torrefaction is an emerging biomass pretreatment technology that can improve the physical and chemical properties of raw biomass, and pyrolysis efficiency and final product quality can therefore be improved by using torrefied biomass...
August 10, 2018: Trends in Biotechnology
V Hariram, S Prakash, S Seralathan, T Micha Premkumar
This data article presents the experimental values pertaining to the bio-oil extraction, optimizing biodiesel production and formulation of emulsified fuel blends of E.tereticornisis bio-oil for its use in compression ignition engine. The E.tereticornisis leaves were collected from the interior region of Puducherry, India. Soxhlet extraction process, in the presence of n-hexane, yielded 5.2% of bio-oil. Based on the free fatty acid content, base catalysed transesterification process was adopted along with use of sodium hydroxide and methanol...
October 2018: Data in Brief
Walaa M S Gomaa, Quanhui Peng, Luciana L Prates, Gamal M Mosaad, Hazem Aamer, Peiqiang Yu
The principal objective of this study was to apply FT/IR-ATR vibrational spectroscopy to inspect the relationship between rumen dry matter (DM) and protein degradation, rumen undegraded protein (RUP) intestinal digestion and processing induced protein molecular structure changes in feedstock (canola oil seeds) and co-products (canola meal) from bio-oil processing from different crushing plants in Canada and China. The rumen DM and protein degradation, rumen undegraded protein intestinal digestion and protein molecular structure affected by bio-oil processing were examined using in situ, three step in vitro digestion and Fourier transform infrared (FT/IR) molecular spectroscopy techniques, respectively...
November 5, 2018: Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
Shaoqing Wang, Zhihe Li, Xueyuan Bai, Weiming Yi, Peng Fu
This study aimed to explore the influence of inherent hierarchical porous char with alkali and alkaline earth metallic species (AAEMs) during pyrolysis of lignin derived from agricultural crop residues in a laboratory fixed-bed at 550 °C. A catalytic strategy was implemented to investigate volatile-char interactions based on ex situ lignin pyrolysis. The physico-chemical properties of the AAEMs-loaded char were characterized by FTIR, XRD, SEM-EDX and N2 nitrogen adsorption analyses. Results indicated that AAEMs-loaded char had a large specific surface area, hierarchical porosity, amorphous carbon structure, surface-active functional groups and highly dispersed metal species...
November 2018: Bioresource Technology
Polykarpos A Lazaridis, Apostolos P Fotopoulos, Stamatia A Karakoulia, Konstantinos S Triantafyllidis
The valorization of lignin that derives as by product in various biomass conversion processes has become a major research and technological objective. The potential of the production of valuable mono-aromatics (BTX and others) and (alkyl)phenols by catalytic fast pyrolysis of lignin is investigated in this work by the use of ZSM-5 zeolites with different acidic and porosity characteristics. More specifically, conventional microporous ZSM-5 (Si/Al = 11.5, 25, 40), nano-sized (≤20 nm, by direct synthesis) and mesoporous (9 nm, by mild alkaline treatment) ZSM-5 zeolites were tested in the fast pyrolysis of a softwood kraft lignin at 400-600°C on a Py/GC-MS system and a fixed-bed reactor unit...
2018: Frontiers in Chemistry
Kuan Ding, Aoxi He, Daoxu Zhong, Liangliang Fan, Shiyu Liu, Yunpu Wang, Yuhuan Liu, Paul Chen, Hanwu Lei, Roger Ruan
The excessive oxygen content in biomass obstructs the production of high-quality bio-oils. In this work, we developed a tandem catalytic bed (TCB) of CeO2 and HZSM-5 in an analytical pyrolyzer to enhance the hydrocarbon production from co-pyrolysis of corn stover (CS) and LDPE. Results indicated that CeO2 could remove oxygen from acids, aldehydes and methoxy phenols, producing a maximum yield of hydrocarbons of 85% and highest selectivity of monocyclic aromatics of 73% in the TCB. The addition of LDPE exhibited a near-complete elimination of oxygenates, leaving hydrocarbons as the overwhelming products...
November 2018: Bioresource Technology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"