keyword
MENU ▼
Read by QxMD icon Read
search

Neural progenitors

keyword
https://www.readbyqxmd.com/read/28231465/time-specific-effects-of-spindle-positioning-on-embryonic-progenitor-pool-composition-and-adult-neural-stem-cell-seeding
#1
Sven Falk, Stéphane Bugeon, Jovica Ninkovic, Gregor-Alexander Pilz, Maria Pia Postiglione, Harold Cremer, Jürgen A Knoblich, Magdalena Götz
The developmental mechanisms regulating the number of adult neural stem cells (aNSCs) are largely unknown. Here we show that the cleavage plane orientation in murine embryonic radial glia cells (RGCs) regulates the number of aNSCs in the lateral ganglionic eminence (LGE). Randomizing spindle orientation in RGCs by overexpression of Insc or a dominant-negative form of Lgn (dnLgn) reduces the frequency of self-renewing asymmetric divisions while favoring symmetric divisions generating two SNPs. Importantly, these changes during embryonic development result in reduced seeding of aNSCs...
February 22, 2017: Neuron
https://www.readbyqxmd.com/read/28231457/a-butterfly-effect-on-neural-stem-cells
#2
Pierre Vanderhaeghen
Adult neural stem cells originate from the embryonic brain, but the underlying mechanisms remain poorly known. In this issue of Neuron, Falk et al. (2017) reveal how the timely control of cleavage plane orientation during division of embryonic neural progenitors has a specific and long-lasting impact on adult neurogenesis.
February 22, 2017: Neuron
https://www.readbyqxmd.com/read/28229087/modeling-williams-syndrome-with-induced-pluripotent-stem-cells
#3
Thanathom Chailangkarn, Alysson R Muotri
The development of induced pluripotent stem cells (iPSCs) like never before has opened novel opportunity to study diseases in relevant cell types. In our recent study, Williams syndrome (WS), a rare genetic neurodevelopmental disorder, that is caused by hemizygous deletion of 25-28 genes on chromosome 7, is of interest because of its unique cognitive and social profiles. Little is known about haploinsufficiency effect of those deleted genes on molecular and cellular phenotypes at the neural level due to the lack of relevant human cellular model...
2017: Neurogenesis (Austin, Tex.)
https://www.readbyqxmd.com/read/28228349/identification-of-prdm-genes-in-human-corneal-endothelium
#4
Kostadin Rolev, G O'Donovan Dominic, Christiana Georgiou, Rajan Madhavan, Alexandra Chittka
Corneal endothelial cells (CECs) are essential for maintaining corneal stromal hydration and ensuring its transparency, which is necessary for normal vision. Dysfunction of CECs leads to stromal decompensation, loss of transparency and corneal blindness. Corneal endothelium has low proliferative potential compared to surface epithelial cells leading to poor regeneration of CEC following injury or age related decline in cellular density. The mechanisms which control proliferation and differentiation of neural crest derived CEC progenitors are yet to be clearly elucidated...
February 19, 2017: Experimental Eye Research
https://www.readbyqxmd.com/read/28227499/promotion-and-guidance-of-neural-network-formation-on-su-8-photoresist-microchannels-adjusted-with-multilayer-films
#5
Yung-Chiang Liu, I-Chi Lee, Kin-Fong Lei, Yung-Chiang Liu, I-Chi Lee, Kin-Fong Lei, Yung-Chiang Liu, I-Chi Lee, Kin-Fong Lei
Induction of neural stem/progenitor cells (NSPCs) and establishment of neural network are important issues on neural engineering. In this work, a platform was designed to control and evaluate the differentiation of NSPCs, neurite direction, and to promote the neurite outgrowth. Polyelectrolyte multilayer (PEM) films provide surface properties by and have been used to regulate NSPCs differentiation in our previous study. Herein, a culture platform composed of SU-8 microchannel and PEM films was designed to achieve the goal of promoting NSPCs differentiation and to evaluate the effect of PEM films on the guidance of neural network formation...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
https://www.readbyqxmd.com/read/28227432/colony-size-effect-on-neural-differentiation-of-embryonic-stem-cells-microprinted-on-stromal-cells
#6
Ramila Joshi, James Buchanan, Hossein Tavana, Ramila Joshi, James Buchanan, Hossein Tavana, Ramila Joshi, James Buchanan, Hossein Tavana
Controlling cellular microenvironment to induce neural differentiation of embryonic stem cells (ESCs) remains a major challenge. We address this need by introducing a micro-engineered co-culture system that resembles embryonic development in terms of direct intercellular interactions and induces neural differentiation of ESCs. A polymeric aqueous two-phase system (ATPS)-mediated robotic microprinting technology allows precise localization of mouse ESCs (mESCs) over a layer of supporting stromal cells. mESCs proliferate over a 2-week culture period into a single colony of defined size...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
https://www.readbyqxmd.com/read/28225193/human-neural-progenitor-transplantation-rescues-behavior-and-reduces-%C3%AE-synuclein-in-a-transgenic-model-of-dementia-with-lewy-bodies
#7
Natalie R S Goldberg, Samuel E Marsh, Joseph Ochaba, Brandon C Shelley, Hayk Davtyan, Leslie M Thompson, Joan S Steffan, Clive N Svendsen, Mathew Blurton-Jones
Synucleinopathies are a group of neurodegenerative disorders sharing the common feature of misfolding and accumulation of the presynaptic protein α-synuclein (α-syn) into insoluble aggregates. Within this diverse group, Dementia with Lewy Bodies (DLB) is characterized by the aberrant accumulation of α-syn in cortical, hippocampal, and brainstem neurons, resulting in multiple cellular stressors that particularly impair dopamine and glutamate neurotransmission and related motor and cognitive function. Recent studies show that murine neural stem cell (NSC) transplantation can improve cognitive or motor function in transgenic models of Alzheimer's and Huntington's disease, and DLB...
February 22, 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28220786/intrauterine-zika-virus-infection-of-pregnant-immunocompetent-mice-models-transplacental-transmission-and-adverse-perinatal-outcomes
#8
Meghan S Vermillion, Jun Lei, Yahya Shabi, Victoria K Baxter, Nathan P Crilly, Michael McLane, Diane E Griffin, Andrew Pekosz, Sabra L Klein, Irina Burd
Zika virus (ZIKV) crosses the placenta and causes congenital disease. Here we develop an animal model utilizing direct ZIKV inoculation into the uterine wall of pregnant, immunocompetent mice to evaluate transplacental transmission. Intrauterine inoculation at embryonic day (E) 10, but not E14, with African, Asian or American strains of ZIKV reduces fetal viability and increases infection of placental and fetal tissues. ZIKV inoculation at E10 causes placental inflammation, placental dysfunction and reduces neonatal brain cortical thickness, which is associated with increased activation of microglia...
February 21, 2017: Nature Communications
https://www.readbyqxmd.com/read/28220575/generation-of-storable-retinal-organoids-and-retinal-pigmented-epithelium-from-adherent-human-ips-cells-in-xeno-free-and-feeder-free-conditions
#9
Sacha Reichman, Amélie Slembrouck, Giuliana Gagliardi, Antoine Chaffiol, Angélique Terray, Céline Nanteau, Anais Potey, Morgane Belle, Oriane Rabesandratana, Jens Duebel, Gael Orieux, Emeline F Nandrot, José-Alain Sahel, Olivier Goureau
Human induced pluripotent stem cells (hiPSCs) are potentially useful in regenerative therapies for retinal disease. For medical applications, therapeutic retinal cells, such as retinal pigmented epithelial (RPE) cells or photoreceptor precursors, must be generated under completely defined conditions. To this purpose, we have developed a two-step xeno-free/feeder-free (XF/FF) culture system to efficiently differentiate hiPSCs into retinal cells. This simple method, relies only on adherent hiPSCs cultured in chemically defined media, bypassing embryoid body formation...
February 20, 2017: Stem Cells
https://www.readbyqxmd.com/read/28219946/distinct-intracellular-ca-2-dynamics-regulate-apical-constriction-and-differentially-contribute-to-neural-tube-closure
#10
Makoto Suzuki, Masanao Sato, Hiroshi Koyama, Yusuke Hara, Kentaro Hayashi, Naoko Yasue, Hiromi Imamura, Toshihiko Fujimori, Takeharu Nagai, Robert E Campbell, Naoto Ueno
Early in the development of the central nervous system, progenitor cells undergo a shape change, called apical constriction, that triggers the neural plate to form a tubular structure. How apical constriction in the neural plate is controlled, and contributes to tissue morphogenesis, are not fully understood. In this study, we show that intracellular calcium ions (Ca(2+)) are required for Xenopus neural tube formation, and that there are two types of Ca(2+)-concentration changes, a single-cell and a multicellular wave-like fluctuation, in the developing neural plate...
February 20, 2017: Development
https://www.readbyqxmd.com/read/28219675/tcf7l2-plays-crucial-roles-in-forebrain-development-through-regulation-of-thalamic-and-habenular-neuron-identity-and-connectivity
#11
Myungsin Lee, Jiyeon Yoon, Hobeom Song, Bumwhee Lee, Lam Tri Duc, Jaeseung Yoon, Kwanghee Baek, Hans Clevers, Yongsu Jeong
The thalamus acts as a central integrator for processing and relaying sensory and motor information to and from the cerebral cortex, and the habenula plays pivotal roles in emotive decision making by modulating dopaminergic and serotonergic circuits. These neural compartments are derived from a common developmental progenitor domain, called prosomere 2, in the caudal forebrain. Thalamic and habenular neurons exhibit distinct molecular profile, neurochemical identity, and axonal circuitry. However, the mechanisms of how their progenitors in prosomere 2 give rise to these two populations of neurons and contribute to the forebrain circuitry remains unclear...
February 17, 2017: Developmental Biology
https://www.readbyqxmd.com/read/28218899/prospective-identification-of-hematopoietic-lineage-choice-by-deep-learning
#12
Felix Buggenthin, Florian Buettner, Philipp S Hoppe, Max Endele, Manuel Kroiss, Michael Strasser, Michael Schwarzfischer, Dirk Loeffler, Konstantinos D Kokkaliaris, Oliver Hilsenbeck, Timm Schroeder, Fabian J Theis, Carsten Marr
Differentiation alters molecular properties of stem and progenitor cells, leading to changes in their shape and movement characteristics. We present a deep neural network that prospectively predicts lineage choice in differentiating primary hematopoietic progenitors using image patches from brightfield microscopy and cellular movement. Surprisingly, lineage choice can be detected up to three generations before conventional molecular markers are observable. Our approach allows identification of cells with differentially expressed lineage-specifying genes without molecular labeling...
February 20, 2017: Nature Methods
https://www.readbyqxmd.com/read/28216417/expression-profiling-of-clinical-specimens-supports-the-existence-of-neural-progenitor-like-stem-cells-in-basal-breast-cancers
#13
Alex Panaccione, Yan Guo, Wendell G Yarbrough, Sergey V Ivanov
BACKGROUND: We previously characterized in salivary adenoid cystic carcinoma (ACC) a novel population of cancer stem cells (CSCs) marked by coexpression of 2 stemness genes, sex-determining region Y (SRY)-related HMG box-containing factor 10 (SOX10) and CD133. We also reported that in ACC and basal-like breast carcinoma (BBC), a triple-negative breast cancer subtype, expression of SOX10 similarly demarcates a highly conserved gene signature enriched with neural stem cell genes. On the basis of these findings, we hypothesized that BBC might be likewise driven by SOX10-positive (SOX10(+))/CD133(+) cells with neural stem cell properties...
January 27, 2017: Clinical Breast Cancer
https://www.readbyqxmd.com/read/28216146/divergent-levels-of-marker-chromosomes-in-an-hipsc-based-model-of%C3%A2-psychosis
#14
Julia Tcw, Claudia M B Carvalho, Bo Yuan, Shen Gu, Alyssa N Altheimer, Shane McCarthy, Dheeraj Malhotra, Jonathan Sebat, Arthur J Siegel, Uwe Rudolph, James R Lupski, Deborah L Levy, Kristen J Brennand
In the process of generating presumably clonal human induced pluripotent stem cells (hiPSCs) from two carriers of a complex structural rearrangement, each having a psychotic disorder, we also serendipitously generated isogenic non-carrier control hiPSCs, finding that the rearrangement occurs as an extrachromosomal marker (mar) element. All confirmed carrier hiPSCs and differentiated neural progenitor cell lines were found to be mosaic. We caution that mar elements may be difficult to functionally evaluate in hiPSC cultures using currently available methods, as it is difficult to distinguish cells with and without mar elements in live mosaic cultures...
February 9, 2017: Stem Cell Reports
https://www.readbyqxmd.com/read/28216142/astrocytic-calcium-waves-signal-brain-injury-to-neural-stem-and%C3%A2-progenitor%C3%A2-cells
#15
Anna Kraft, Eduardo Rosales Jubal, Ruth von Laer, Claudia Döring, Adriana Rocha, Moyo Grebbin, Martin Zenke, Helmut Kettenmann, Albrecht Stroh, Stefan Momma
Brain injuries, such as stroke or trauma, induce neural stem cells in the subventricular zone (SVZ) to a neurogenic response. Very little is known about the molecular cues that signal tissue damage, even over large distances, to the SVZ. Based on our analysis of gene expression patterns in the SVZ, 48 hr after an ischemic lesion caused by middle cerebral artery occlusion, we hypothesized that the presence of an injury might be transmitted by an astrocytic traveling calcium wave rather than by diffusible factors or hypoxia...
February 3, 2017: Stem Cell Reports
https://www.readbyqxmd.com/read/28215529/new-insights-into-the-roles-of-retinoic-acid-signaling-in-nervous-system-development-and-the-establishment-of-neurotransmitter-systems
#16
E Zieger, M Schubert
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems...
2017: International Review of Cell and Molecular Biology
https://www.readbyqxmd.com/read/28214347/involvement-of-the-guanine-nucleotide-exchange-factor-vav3-in-central-nervous-system-development-and-plasticity
#17
Annika Ulc, Christine Gottschling, Ina Schäfer, David Wegrzyn, Simon van Leeuwen, Veronika Luft, Jacqueline Reinhard, Andreas Faissner
Small GTP-hydrolysing enzymes (GTPases) of the RhoA family play manifold roles in cell biology and are regulated by upstream guanine nucleotide exchange factors (GEFs). Herein, we focus on the GEFs of the Vav subfamily. Vav1 was originally described as a protooncogene of the hematopoietic lineage. The GEFs Vav2 and Vav3 are more broadly expressed in various tissues. In particular, the GEF Vav3 may play important roles in the developing nervous system during the differentiation of neural stem cells into the major lineages, namely neurons, oligodendrocytes and astrocytes...
February 18, 2017: Biological Chemistry
https://www.readbyqxmd.com/read/28213969/highly-efficient-neural-conversion-of-human-pluripotent-stem-cells-in-adherent-and-animal-free-conditions
#18
Dunja Lukovic, Andrea Diez Lloret, Petra Stojkovic, Daniel Rodríguez-Martínez, Maria Amparo Perez Arago, Francisco Javier Rodriguez-Jimenez, Patricia González-Rodríguez, José López-Barneo, Eva Sykova, Pavla Jendelova, Jelena Kostic, Victoria Moreno-Manzano, Miodrag Stojkovic, Shomi S Bhattacharya, Slaven Erceg
Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions...
February 18, 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28212724/mechanistic-insight-into-neurotoxicity-induced-by-developmental-insults
#19
REVIEW
Christoffer Tamm, Sandra Ceccatelli
Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology...
January 15, 2017: Biochemical and Biophysical Research Communications
https://www.readbyqxmd.com/read/28209600/cell-therapy-for-gi-motility-disorders-comparison-of-cell-sources-and-proposed-steps-for-treating-hirschsprung-disease
#20
Lincon A Stamp
Cell therapeutic approaches to treat a range of congenital and degenerative neuropathies are under intense investigation. There have been recent significant advancements in the development of cell therapy to treat disorders of the enteric nervous system, enteric neuropathies. These advances include the efficient generation of enteric neural progenitors from pluripotent stem cells and the rescue of a Hirschsprung Disease model mouse following their transplantation into the bowel. Further, a recent study provides evidence of functional innervation of the bowel muscle by neurons derived from transplanted ENS-derived neural progenitors...
February 16, 2017: American Journal of Physiology. Gastrointestinal and Liver Physiology
keyword
keyword
16749
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"