Read by QxMD icon Read

catalytic nanomedicine

Patel Puja, Ponnuchamy Kumar
In recent era, the interest on inorganic nanoparticles is augmenting due to their engrossing and uncanny properties. Among them, platinum nanoparticles (PtNPs) are highly remarkable owing to their intrinsic physicochemical and biological properties making them an effective candidate towards catalytic and biomedical applications. Nevertheless, conventional physical and chemical methodologies of PtNPs synthesis are among the most prevalent protocols to synthesize PtNPs of desired shape and size. However, the above methods create notable concern to health and environment due to the use of harsh and toxic chemicals as well as violent reaction conditions...
November 19, 2018: Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
Tessy López-Goerne, Paola Ramírez, Daniel Alvarez, Francisco Rodríguez-Reinoso, Ana M Silvestre-Albero, Esteban Gómez, Enrique Rodríguez-Castellon
AIM: Sol-gel is a suitable and advantageous method to synthesize mixed oxide nanomaterials with unique physicochemical and biological properties. MATERIALS & METHODS: In this work, TiO2 -SiO2 nanopowders cogeled with platinum acetylacetonate were developed and studied in the perspective of nanomedicine. The physicochemical properties of the Pt/TiO2 -SiO2 nanopowders, named NanoRa2 -Pt, were evaluated in detail by means of complementary spectroscopic and microscopic tools...
September 2018: Nanomedicine
V Sokolova, K Loza, T Knuschke, J Heinen-Weiler, H Jastrow, M Hasenberg, J Buer, A M Westendorf, M Gunzer, M Epple
Nanoparticles can act as transporters for synthetic molecules and biomolecules into cells, also in immunology. Antigen-presenting cells like dendritic cells are important targets for immunotherapy in nanomedicine. Therefore, we have used primary murine bone marrow-derived phagocytosing cells (bmPCs), i.e. dendritic cells and macrophages, to study their interaction with spherical barium sulphate particles of different size (40 nm, 420 nm, and 1 µm) and to follow their uptake pathway. Barium sulphate is chemically and biologically inert (no dissolution, no catalytic effects), i...
October 15, 2018: Acta Biomaterialia
Dehong Hu, Zhuwen Chen, Zonghai Sheng, Duyang Gao, Fei Yan, Teng Ma, Hairong Zheng, Mei Hong
Photodynamic therapy (PDT) is an alternative strategy for treating pancreatic cancer (PC) in clinics. However, the therapeutic efficacy is generally suppressed by inadequate oxygen supply in the hypoxic tumor microenvironment. Herein, hierarchical zeolite nanocarriers with hydrophilic mesoporous nanostructures and excellent biodegradability are synthesized via a one-pot wet chemical method. By co-loading with catalase and methylene blue (MB), a new type of oxygen self-sufficient PDT platform, a zeolite-catalase-MB nanocapsule (ZCM nanocapsule), is developed...
September 20, 2018: Nanoscale
Youkun Zheng, Weiwei Liu, Zhaojian Qin, Yun Chen, Hui Jiang, Xuemei Wang
Widespread bacterial resistance induced by the abuse of antibiotics eagerly needs the exploitation of novel antimicrobial agents and strategies. Gold nanoclusters (Au NCs) have recently emerged as an innovative nanomedicine, but study on their antibacterial properties especially toward multidrug resistant (MDR) bacteria is scarce. Herein, we demonstrate that a novel class of Au NCs, mercaptopyrimidine conjugated Au NCs, can act as potent nanoantibiotics targeting these intractable superbugs in vitro and in vivo, without induction of bacterial antibiotic resistance and noticeable cytotoxicity to mammalian cells...
September 19, 2018: Bioconjugate Chemistry
Jinhwan Kim, Donghyun Jang, Hyeongmok Park, Sungjin Jung, Dae Heon Kim, Won Jong Kim
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated...
July 30, 2018: Advanced Materials
N V Srikanth Vallabani, Sanjay Singh
Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as chemically inert materials and, therefore, being extensively applied in the areas of imaging, targeting, drug delivery and biosensors. Their unique properties such as low toxicity, biocompatibility, potent magnetic and catalytic behavior and superior role in multifunctional modalities have epitomized them as an appropriate candidate for biomedical applications. Recent developments in the area of materials science have enabled the facile synthesis of Iron oxide nanoparticles (IONPs) offering easy tuning of surface properties and surface functionalization with desired biomolecules...
June 2018: 3 Biotech
Margarita Vázquez-González, Itamar Willner
Recent advances addressing the development of stimuli-responsive nucleic acid (DNA)-functionalized micro/nanocarriers for the controlled release of drugs are presented. The DNA associated with the drug-loaded carriers acts as capping units that lock the drugs in the carriers. In the presence of appropriate triggers, the capping units are unlocked, resulting in the release of the drugs. Three types of DNA-modified carriers are discussed, including mesoporous SiO2 nanoparticles (MP SiO2 NPs), metal-organic framework nanoparticles (NMOFs) and micro/nanocapsules...
June 25, 2018: Langmuir: the ACS Journal of Surfaces and Colloids
Piao Zhu, Yu Chen, Jianlin Shi
Ultrasound (US)-triggered sonodynamic therapy (SDT) can solve the critical issue of low tissue-penetrating depth of traditional phototriggered therapies, but the SDT efficacy is still not satisfactorily high in combating cancer at the current stage. Here we report on augmenting the SDT efficacy based on catalytic nanomedicine, which takes the efficient catalytic features of nanoenzymes to modulate the tumor microenvironment (TME). The multifunctional nanosonosensitizers have been successfully constructed by the integration of a MnO x component with biocompatible/biodegradable hollow mesoporous organosilica nanoparticles, followed by conjugation with protoporphyrin (as the sonosensitizer) and cyclic arginine-glycine-aspartic pentapeptide (as the targeting peptide)...
April 24, 2018: ACS Nano
Maria V Efremova, Maxim M Veselov, Alexander V Barulin, Sergey L Gribanovsky, Irina M Le-Deygen, Igor V Uporov, Elena V Kudryashova, Marina Sokolsky-Papkov, Alexander G Majouga, Yuri I Golovin, Alexander V Kabanov, Natalia L Klyachko
Magnetomechanical modulation of biochemical processes is a promising instrument for bioengineering and nanomedicine. This work demonstrates two approaches to control activity of an enzyme, α-chymotrypsin immobilized on the surface of gold-coated magnetite magnetic nanoparticles (GM-MNPs) using a nonheating low-frequency magnetic field (LF MF). The measurement of the enzyme reaction rate was carried out in situ during exposure to the magnetic field. The first approach involves α-chymotrypsin-GM-MNPs conjugates, in which the enzyme undergoes mechanical deformations with the reorientation of the MNPs under LF MF (16-410 Hz frequency, 88 mT flux density)...
April 24, 2018: ACS Nano
Martina Datteo, Hongsheng Liu, Cristiana Di Valentin
Beyond two-dimensional (2D) materials, interfaces between 2D materials and underlying supports or 2D-coated metal or metal oxide nanoparticles exhibit excellent properties and promising applications. The hybrid interface between graphene and anatase TiO2 shows great importance in photocatalytic, catalytic, and nanomedical applications due to the excellent and complementary properties of the two materials. Water, as a ubiquitous and essential element in practical conditions and in the human body, plays a significant role in the applications of graphene/TiO2 composites for both electronic devices and nanomedicine...
February 14, 2018: ACS Applied Materials & Interfaces
Lewis D Blackman, Spyridon Varlas, Maria C Arno, Alice Fayter, Matthew I Gibson, Rachel K O'Reilly
Enzyme loading of polymersomes requires permeability to enable them to interact with the external environment, typically requiring addition of complex functionality to enable porosity. Herein, we describe a synthetic route towards intrinsically permeable polymersomes loaded with functional proteins using initiator-free visible light-mediated polymerization-induced self-assembly (photo-PISA) under mild, aqueous conditions using a commercial monomer. Compartmentalization and retention of protein functionality was demonstrated using green fluorescent protein as a macro-molecular chromophore...
October 31, 2017: ACS Macro Letters
Jin-Yue Zeng, Xiao-Shuang Wang, Ming-Kang Zhang, Zi-Hao Li, Dan Gong, Pei Pan, Lin Huang, Si-Xue Cheng, Han Cheng, Xian-Zheng Zhang
A universal strategy was reported that enables functional group-capped nanostructures with various morphologies and compositions to be coated by porphyrin metal-organic framework (MOF). Based on the nanostructure-induced heterogeneous nucleation, the controlled growth of MOF shell on the surface of nanostructures can be realized. It was demonstrated that this modification strategy can realize controlled growth of porphyrin MOF on a series of organic and inorganic nanostructures, such as polydopamine (PDA) nanoparticles, PDA@Pt nanoparticles, graphene oxide sheets, and Au nanorods...
December 13, 2017: ACS Applied Materials & Interfaces
Kun Zhang, Tai-Qun Yang, Bing-Qian Shan, Peng-Cheng Liu, Bo Peng, Qing-Song Xue, En-Hui Yuan, Peng Wu, Belén Albela, Laurent Bonneviot
Mesoporous nanospheres are highly regarded for their applications in nanomedicine, optical devices, batteries, nanofiltration, and heterogeneous catalysis. In the last field, the dendritic morphology, which favors molecular diffusion, is a very important morphology known for silica, but not yet for carbon. A one-pot, easy, and scalable co-sol-gel route by using the triphasic resol-surfactant-silica system is shown to yield the topologies of dendritic and core-shell-corona mesoporous sister nanospheres by inner radial phase speciation control on a mass-transfer-limited process, depending on the relative polycondensation rates of the resol polymer and silica phases...
January 9, 2018: Chemistry: a European Journal
Minfeng Huo, Liying Wang, Yu Chen, Jianlin Shi
Tumor cells metabolize in distinct pathways compared with most normal tissue cells. The resulting tumor microenvironment would provide characteristic physiochemical conditions for selective tumor modalities. Here we introduce a concept of sequential catalytic nanomedicine for efficient tumor therapy by designing and delivering biocompatible nanocatalysts into tumor sites. Natural glucose oxidase (GOD, enzyme catalyst) and ultrasmall Fe3 O4 nanoparticles (inorganic nanozyme, Fenton reaction catalyst) have been integrated into the large pore-sized and biodegradable dendritic silica nanoparticles to fabricate the sequential nanocatalyst...
August 25, 2017: Nature Communications
Miaoyi Wang, Ghizal Siddiqui, Ove J R Gustafsson, Aleksandr Käkinen, Ibrahim Javed, Nicolas H Voelcker, Darren J Creek, Pu Chun Ke, Thomas P Davis
Polyethylene glycol (PEG) is widely used as an antifouling and stealth polymer in surface engineering and nanomedicine. However, recent research has revealed adverse effects of bioaccumulation and immunogenicity following the administration of PEG, prompting this proteomic examination of the plasma protein coronae association with superparamagnetic iron oxide nanoparticles (IONPs) grafted with brushed PEG (bPEG) and an alternative, brushed phosphorylcholine (bPC). Using label-free quantitation by liquid chromatography tandem-mass spectrometry, this study determines protein abundances for the in vitro hard coronae of bare, bPC-, and bPEG-grafted IONPs in human plasma...
August 7, 2017: Small
Deborah Pedone, Mauro Moglianetti, Elisa De Luca, Giuseppe Bardi, Pier Paolo Pompa
Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine...
August 14, 2017: Chemical Society Reviews
Wenhu Zhou, Jinsong Ding, Juewen Liu
DNAzymes are catalytically active DNA molecules that are obtained via in vitro selection. RNA-cleaving DNAzymes have attracted significant attention for both therapeutic and diagnostic applications due to their excellent programmability, stability, and activity. They can be designed to cleave a specific mRNA to down-regulate gene expression. At the same time, DNAzymes can sense a broad range of analytes. By combining these two functions, theranostic DNAzymes are obtained. This review summarizes the progress of DNAzyme for theranostic applications...
2017: Theranostics
Jose M Carnerero, Aila Jimenez-Ruiz, Paula M Castillo, Rafael Prado-Gotor
The interactions of DNA, whether long, hundred base pair chains or short-chained oligonucleotides, with ligands play a key role in the field of structural biology. Its biological activity not only depends on the thermodynamic properties of DNA-ligand complexes, but can and often is conditioned by the formation kinetics of those complexes. On the other hand, gold nanoparticles have long been known to present excellent biocompatibility with biomolecules and are themselves remarkable for their structural, electronic, magnetic, optical and catalytic properties, radically different from those of their counterpart bulk materials, and which make them an important asset in multiple applications...
January 4, 2017: Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry
Adriano A Torrano, Rudolf Herrmann, Claudia Strobel, Markus Rennhak, Hanna Engelke, Armin Reller, Ingrid Hilger, Achim Wixforth, Christoph Bräuchle
In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol...
July 7, 2016: Nanoscale
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"