Read by QxMD icon Read


U Thomas Meier
Aside from nucleoli, Cajal bodies (CBs) are the best-characterized organelles of mammalian cell nuclei. Like nucleoli, CBs concentrate ribonucleoproteins (RNPs), in particular, spliceosomal small nuclear RNPs (snRNPs) and small nucleolar RNPs (snoRNPs). In one of the best-defined functions of CBs, most of the snoRNPs are involved in site-specific modification of snRNAs. The two major modifications are pseudouridylation and 2'-O-methylation that are guided by the box H/ACA and C/D snoRNPs, respectively. This review details the modifications, their function, the mechanism of modification, and the machineries involved...
October 24, 2016: RNA Biology
Alexander K C Ulrich, Martin Seeger, Tonio Schütze, Natascha Bartlick, Markus C Wahl
The spliceosomal B complex-specific protein Prp38 forms a complex with the intrinsically unstructured proteins MFAP1 and Snu23. Our binding and crystal structure analyses show that MFAP1 and Snu23 contact Prp38 via ER/K motif-stabilized single α helices, which have previously been recognized only as rigid connectors or force springs between protein domains. A variant of the Prp38-binding single α helix of MFAP1, in which ER/K motifs not involved in Prp38 binding were mutated, was less α-helical in isolation and showed a reduced Prp38 affinity, with opposing tendencies in interaction enthalpy and entropy...
October 13, 2016: Structure
Iain A Sawyer, David Sturgill, Myong-Hee Sung, Gordon L Hager, Miroslav Dundr
Nuclear bodies contribute to non-random organization of the human genome and nuclear function. Using a major prototypical nuclear body, the Cajal body, as an example, we suggest that these structures assemble at specific gene loci located across the genome as a result of high transcriptional activity. Subsequently, target genes are physically clustered in close proximity in Cajal body-containing cells. However, Cajal bodies are observed in only a limited number of human cell types, including neuronal and cancer cells...
October 21, 2016: BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology
Robert Ringseis, Wilhelm Windisch, Klaus Eder
In the present study, transcript profiling was carried out in liver biopsies from high-yielding dairy cows at week 5 of lactation in order to identify genes and pathways regulated by feeding rumen-protected conjugated linoleic acid (CLA) during the transition period. Analysis of a bovine whole genome microarray revealed a total number of 130 annotated differentially expressed genes (DEGs) in the liver between cows of the CLA group and the control group (filter: P < 0.05 and fold change (FC) ≥ 1.3 or ≤- 1...
December 2016: Genomics Data
Julie Rodor, David R FitzPatrick, Eduardo Eyras, Javier F Cáceres
Mutations in the RNA-binding protein, RBM10, result in a human syndromic form of cleft palate, termed TARP syndrome. A role for RBM10 in alternative splicing regulation has been previously demonstrated in human cell lines. To uncover the cellular functions of RBM10 in a cell line that is relevant to the phenotype observed in TARP syndrome, we used iCLIP to identify its endogenous RNA targets in a mouse embryonic mandibular cell line. We observed that RBM10 binds to pre-mRNAs with significant enrichment in intronic regions, in agreement with a role for this protein in pre-mRNA splicing...
October 20, 2016: RNA Biology
Laure D Sultan, Daria Mileshina, Felix Grewe, Katarzyna Rolle, Sivan Abudraham, Paweł Głodowicz, Adnan Khan Niazi, Ido Keren, Sofia Shevtsov, Liron Klipcan, Jan Barciszewski, Jeffrey P Mower, Andre Dietrich, Oren Ostersetzer
Group II introns are large catalytic RNAs that are ancestrally related to nuclear spliceosomal introns. Sequences corresponding to group II RNAs are found in many prokaryotes and are particularly prevalent within plants organellar genomes. Proteins encoded within the introns themselves (maturases) facilitate the splicing of their own host pre-RNAs. Mitochondrial introns in plants have diverged considerably in sequence and have lost their maturases. In angiosperms, only a single maturase has been retained in the mitochondrial DNA: the matR gene found within NADH dehydrogenase 1 (nad1) intron 4...
October 19, 2016: Plant Cell
Rei Yoshimoto, Daisuke Kaida, Masaaki Furuno, A Maxwell Burroughs, Shohei Noma, Harukazu Suzuki, Yumi Kawamura, Yoshihide Hayashizaki, Akila Mayeda, Minoru Yoshida
Spliceostatin A (SSA) is a methyl ketal derivative of FR901464, a potent antitumor compound isolated from a culture broth of Pseudomonas sp. no. 2663. These compounds selectively bind to the essential spliceosome component SF3b, a subcomplex of the U2 snRNP, to inhibit pre-mRNA splicing. However, the mechanism of SSA's antitumor activity is unknown. It is noteworthy that SSA causes accumulation of a truncated form of the CDK inhibitor protein p27 translated from CDKN1B pre-mRNA, which is involved in SSA-induced cell-cycle arrest...
October 17, 2016: RNA
Pravin Kumar Ankush Jagtap, Divita Garg, Tobias G Kapp, Cindy L Will, Oliver Demmer, Reinhard Luhrmann, Horst Kessler, Michael Sattler
U2AF homology motifs (UHMs) are atypical RNA Recognition Motif (RRM) domains that mediate critical protein-protein interactions during the regulation of alternative pre-mRNA splicing and other processes. The recognition of UHM domains by UHM Ligand Motif (ULM) peptide sequences plays important roles during early steps of spliceosome assembly. Splicing factor 45 kDa (SPF45) is an alternative splicing factor implicated in breast and lung cancer and splicing regulation of apoptosis-linked pre-mRNAs by SPF45 was shown to depend on interactions of its UHM domain with ULM motifs in constitutive splicing factors...
October 18, 2016: Journal of Medicinal Chemistry
Jessica Brandi, Ilaria Dando, Elisa Dalla Pozza, Giulia Biondani, Rosalind Jenkins, Victoria Elliott, Kevin Park, Giuseppina Fanelli, Lello Zolla, Eithne Costello, Aldo Scarpa, Daniela Cecconi, Marta Palmieri
: Recently, we have shown that the secretome of pancreatic cancer stem cells (CSCs) is characterized by proteins that participate in cancer differentiation, invasion, and metastasis. However, the differentially expressed intracellular proteins that lead to the specific characteristics of pancreatic CSCs have not yet been identified, and as a consequence the deranged metabolic pathways are yet to be elucidated. To identify the modulated proteins of pancreatic CSCs, iTRAQ-based proteomic analysis was performed to compare the proteome of Panc1 CSCs and Panc1 parental cells, identifying 230 modulated proteins...
October 13, 2016: Journal of Proteomics
Veenu Tripathi, Katherine M Sixt, Shaojian Gao, Xuan Xu, Jing Huang, Roberto Weigert, Ming Zhou, Ying E Zhang
In advanced stages of cancers, TGF-β promotes tumor progression in conjunction with inputs from receptor tyrosine kinase pathways. However, mechanisms that underpin the signaling cooperation and convert TGF-β from a potent growth inhibitor to a tumor promoter are not fully understood. We report here that TGF-β directly regulates alternative splicing of cancer stem cell marker CD44 through a phosphorylated T179 of SMAD3-mediated interaction with RNA-binding protein PCBP1. We show that TGF-β and EGF respectively induce SMAD3 and PCBP1 to colocalize in SC35-positive nuclear speckles, and the two proteins interact in the variable exon region of CD44 pre-mRNA to inhibit spliceosome assembly in favor of expressing the mesenchymal isoform CD44s over the epithelial isoform CD44E...
October 4, 2016: Molecular Cell
Sara K Custer, Timra D Gilson, Hongxia Li, A Gary Todd, Jacob W Astroski, Hai Lin, Yunlong Liu, Elliot J Androphy
Spinal muscular atrophy (SMA) is an intractable neurodegenerative disease afflicting 1 in 6-10,000 live births. One of the key functions of the SMN protein is regulation of spliceosome assembly. Reduced levels of the SMN protein that are observed in SMA have been shown to result in aberrant mRNA splicing. SMN-dependent mis-spliced transcripts in motor neurons may cause stresses that are particularly harmful and may serve as potential targets for the treatment of motor neuron disease or as biomarkers in the SMA patient population...
2016: PloS One
Rajendra Kumar Agrawal, Hong-Wei Wang, Marlene Belfort
Group II introns are large catalytic RNAs that form a ribonucleoprotein (RNP) complex by binding to an intron-encoded protein (IEP). The IEP, which facilitates both RNA splicing and intron mobility, has multiple activities including reverse transcriptase. Recent structures of a group II intron RNP complex and of IEPs from diverse bacteria fuel arguments that group II introns are ancestrally related to eukaryotic spliceosomes as well as to telomerase and viruses. Furthermore, recent structural studies of various functional states of the spliceosome allow us to draw parallels between the group II intron RNP and the spliceosome...
October 11, 2016: RNA Biology
Wojciech Cypryk, Martina B Lorey, Anne Puustinen, Tuula A Nyman, Sampsa Matikainen
Influenza A viruses (IAVs) are aggressive pathogens that cause acute respiratory diseases and annual epidemics in humans. Host defense against IAV infection is initiated by macrophages, which are the principal effector cells of the innate immune system. We have previously shown that IAV infection of human macrophages is associated with robust secretion of proteins via conventional and unconventional protein release pathways. Here we have characterized unconventional, extracellular vesicle (EV)-mediated protein secretion in human macrophages during IAV infection using proteomics, bioinformatics and functional studies...
October 11, 2016: Journal of Proteome Research
Perrine Rasschaert, Thomas Figueroa, Ginette Dambrine, Denis Rasschaert, Sylvie Laurent
Interplay between alternative splicing and the Microprocessor may have differential effects on the expression of intronic miRNAs organised into clusters. We used a viral model - the LAT long non-coding RNA (LAT lncRNA) of Marek's disease oncogenic herpesvirus (MDV-1), which has the mdv1-miR-M8-M6-M7-M10 cluster embedded in its first intron - to assess the impact of splicing modifications on the biogenesis of each of the miRNAs from the cluster. Drosha silencing and alternative splicing of an extended exon 2 of the LAT lncRNA from a newly identified 3' splice site (SS) at the end of the second miRNA of the cluster showed that mdv1-miR-M6 was a 5'-tailed mirtron...
October 7, 2016: RNA Biology
Iain A Sawyer, Gordon L Hager, Miroslav Dundr
The assembly of specialized sub-nuclear microenvironments known as nuclear bodies (NBs) is important for promoting efficient nuclear function. In particular, the Cajal body (CB), a prominent NB that facilitates spliceosomal snRNP biogenesis, assembles in response to genomic cues. Here, we detail the factors that regulate CB assembly and structural maintenance. These include the importance of transcription at nucleating gene loci, the grouping of these genes on human chromosomes 1, 6 and 17, as well as cell cycle and biochemical regulation of CB protein function...
October 7, 2016: RNA Biology
Yongchun Zuo, Guanghua Su, Shanshan Wang, Lei Yang, Mingzhi Liao, Zhuying Wei, Chunling Bai, Guangpeng Li
Recent genome-wide omics studies have confirmed the early embryogenesis strictly dependent on the rigorous spatiotemporal activation and multilevel regulation. However, the full effect of functional pathway was not considered. To obtain complete understanding of the gene activation during early development, we performed systematic comparisons based on differential co-expression analysis for bovine preimplantation embryo development (PED). The results confirmed that the functional pathways actively transcribes as early as the 2-cell and 4-cell waves, which Basal transcription factor, Endocytosis and Spliceosome pathway can represent first signs of embryonic activity...
September 29, 2016: Oncotarget
Dong Zi Zhu, Xue Fang Zhao, Chang Zhen Liu, Fang Fang Ma, Fang Wang, Xin-Qi Gao, Xian Sheng Zhang
ROOT INITIATION DEFECTIVE 1 (RID1) is an Arabidopsis DEAH/RHA RNA helicase. It functions in hypocotyl de-differentiation, de novo meristem formation, and cell specification of the mature female gametophyte (FG). However, it is unclear how RID1 regulates FG development. In this study, we observed that mutations to RID1 disrupted the developmental synchrony and retarded the progression of FG development. RID1 exhibited RNA helicase activity, with a preference for unwinding double-stranded RNA in the 3' to 5' direction...
October 2016: Journal of Experimental Botany
Li Chen, Robert Weinmeister, Jana Kralovicova, Lucy P Eperon, Igor Vorechovsky, Andrew J Hudson, Ian C Eperon
The selection of 3' splice sites (3'ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3'ss. Pre-mRNA molecules with two alternative 3'ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted...
September 28, 2016: Nucleic Acids Research
Eric Allemand, Michael P Myers, Jose Garcia-Bernardo, Annick Harel-Bellan, Adrian R Krainer, Christian Muchardt
Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny...
September 2016: PLoS Genetics
Amanda C Raimer, Kelsey M Gray, A Gregory Matera
Survival Motor Neuron (SMN) protein localizes to both the nucleus and the cytoplasm. Cytoplasmic SMN is diffusely localized in large oligomeric complexes with core member proteins, called Gemins. Biochemical and cell biological studies have demonstrated that the SMN complex is required for the cytoplasmic assembly and nuclear transport of Sm-class ribonucleoproteins (RNPs). Nuclear SMN accumulates with spliceosomal small nuclear (sn)RNPs in Cajal bodies, sub-domains involved in multiple facets of snRNP maturation...
September 20, 2016: RNA Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"