Read by QxMD icon Read


Robert N Goldstone, Michael C McCormack, Rachel L Goldstein, Srivalleesha Mallidi, Mark A Randolph, Michael T Watkins, Robert W Redmond, William G Austen
OBJECTIVE: We hypothesized that decreasing vein compliance would protect the vein against stretch injury and reduce intimal hyperplasia (IH). BACKGROUND: Although arteriovenous fistulas (AVFs) are the criterion standard for vascular access, their effectiveness is limited by poor patency with 40% to 60% failing due to IH. Venous stretch injury from exposure to arterial pressure induces IH. Photochemical tissue passivation (PTP) crosslinks adventitial collagen, decreasing vein compliance to resemble that of an artery...
October 17, 2016: Annals of Surgery
Lihui Weng, Hsiang-Jer Tseng, Parinaz Rostamzadeh, Jafar Golzarian
Drug loadable bioresorbable microspheres (BRMS) are specially designed for the treatment of hypervascular tumors through arterial embolization. These microspheres consist of carboxymethyl chitosan crosslinked with carboxymethyl cellulose, and are available at different size ranges varying from 50 to 900 µm in diameter. Similar to commercially available non-resorbable drug eluting microspheres, LC Bead(®) microspheres (LCB), BRMS were capable of loading more than 99 % of doxorubicin, an anticancer drug, from the solution within 2 h with highly similar kinetics (difference factor f 1 = 0...
December 2016: Journal of Materials Science. Materials in Medicine
Andrea Träger, Samuel A Pendergraph, Torbjörn Pettersson, Tobias Halthur, Tommy Nylander, Anna Carlmark, Lars Wågberg
In this study the wet adhesion between Layer-by-Layer (LbL) assembled films of triblock copolymer micelles was investigated. Through the LbL assembly of triblock copolymer micelles with hydrophobic, low glass transition temperature (Tg) middle blocks and ionic outer blocks, a network of energy dissipating polymer chains with electrostatic interactions serving as crosslinks can be built. Four triblock copolymers were synthesized through Atom Transfer Radical Polymerisation (ATRP). One pair had a poly(2-ethyl-hexyl methacrylate) middle block with cationic or anionic outer blocks...
October 18, 2016: Nanoscale
Madeleine Peschke, Clara Brieke, Max J Cryle
The glycopeptide antibiotics are peptide-based natural products with impressive antibiotic function that derives from their unique three-dimensional structure. Biosynthesis of the glycopeptide antibiotics centres of the combination of peptide synthesis, mediated by a non-ribosomal peptide synthetase, and the crosslinking of aromatic side chains of the peptide, mediated by the action of a cascade of Cytochrome P450s. Here, we report the first example of in vitro activity of OxyE, which catalyses the F-O-G ring formation reaction in teicoplanin biosynthesis...
October 18, 2016: Scientific Reports
Christine Koehler, Paul F Sauter, Mirella Wawryszyn, Gemma Estrada Girona, Kapil Gupta, Jonathan J M Landry, Markus Hsi-Yang Fritz, Ksenija Radic, Jan-Erik Hoffmann, Zhuo A Chen, Juan Zou, Piau Siong Tan, Bence Galik, Sini Junttila, Peggy Stolt-Bergner, Giancarlo Pruneri, Attila Gyenesei, Carsten Schultz, Moritz Bosse Biskup, Hueseyin Besir, Vladimir Benes, Juri Rappsilber, Martin Jechlinger, Jan O Korbel, Imre Berger, Stefan Braese, Edward A Lemke
We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies...
October 17, 2016: Nature Methods
Jakob Manhart, Santhosh Ayalur-Karunakaran, Simone Radl, Andreas Oesterreicher, Andreas Moser, Christian Ganser, Christian Teichert, Gerald Pinter, Wolfgang Kern, Thomas Griesser, Sandra Schlögl
The photo-reversible [4πs+4πs] cycloaddition reaction of pendant anthracene moieties represents a convenient strategy to impart wavelength dependent properties into hydrogenated carboxylated nitrile butadiene rubber (HXNBR) networks. The present article provides the (1)H NMR data on the reaction kinetics of the side chain functionalization of HXNBR. 2-(Anthracene-9-yl)oxirane with reactive epoxy groups is covalently attached to the polymer side chain of HXNBR via ring opening reaction between the epoxy and the carboxylic groups...
December 2016: Data in Brief
Anne-Laure Chateigner-Boutin, José J Ordaz-Ortiz, Camille Alvarado, Brigitte Bouchet, Sylvie Durand, Yves Verhertbruggen, Yves Barrière, Luc Saulnier
Cell walls are comprised of networks of entangled polymers that differ considerably between species, tissues and developmental stages. The cell walls of grasses, a family that encompasses major crops, contain specific polysaccharide structures such as xylans substituted with feruloylated arabinose residues. Ferulic acid is involved in the grass cell wall assembly by mediating linkages between xylan chains and between xylans and lignins. Ferulic acid contributes to the physical properties of cell walls, it is a hindrance to cell wall degradability (thus biomass conversion and silage digestibility) and may contribute to pest resistance...
2016: Frontiers in Plant Science
Ana M Matia-González, Valentina Iadevaia, André P Gerber
We describe a tandem RNA isolation procedure (TRIP) that enables purification of in vivo formed messenger ribonucleoprotein (mRNP) complexes. The procedure relies on the purification of polyadenylated mRNAs with oligo(dT) beads from cellular extracts, followed by the capture of specific mRNAs with 3'-biotinylated 2'-O-methylated antisense RNA oligonucleotides, which are recovered with streptavidin beads. TRIP was applied to isolate in vivo crosslinked mRNP complexes from yeast, nematodes and human cells for subsequent analysis of RNAs and bound proteins...
October 13, 2016: Methods: a Companion to Methods in Enzymology
Roda Seseogullari-Dirihan, Mustafa Murat Mutluay, David H Pashley, Arzu Tezvergil-Mutluay
OBJECTIVE: Inactivation of dentin proteases by crosslinkers has been suggested as a way to prevent the degradation of dentin collagen in the hybrid layer. However, it is not known if the inhibition is reversible. The aim of this study was to evaluate the inactivation effect of various crosslinkers on dentin protease activity over a period of 6 months. METHODS: Demineralized dentin beams (1×2×6mm, n=10/group) were treated with (1) 1% glutaraldehyde (GA1), (2) 5% glutaraldehyde (GA5), (3) 1% grape seed extract (GS1), (4) 5% grape seed extract (GS5), (5) 10% sumac berry extract (S), (6) 20μM curcumin (CR20), and (7) 200μM curcumin (CR200) for 5min...
October 10, 2016: Dental Materials: Official Publication of the Academy of Dental Materials
Ana V Ferreira, Ilana Perelshtein, Nina Perkas, Aharon Gedanken, Joana Cunha, Artur Cavaco-Paulo
Chronic wound fluids have elevated concentration of human neutrophil elastase (HNE) which can be used as inflammation/infection marker. Our goal is to develop functional materials for fast diagnosis of wound inflammation/infection by using HNE as a specific marker. For that, fluorogenic peptides with a HNE-specific cleavage sequence were incorporated into traditional textile dressings, to allow real-time detection of the wound status. Two different fluorogenic approaches were studied in terms of intensity of the signal generated upon HNE addition: a fluorophore 7-amino-4-trifluormethylcoumarin (AFC) conjugated to a HNE-specific peptide and two fluorophore/quencher pairs (FAM/Dabcyl and EDANS/Dabcyl) coupled to a similar peptide as a Förster resonance energy transfer (FRET) strategy...
October 15, 2016: Applied Microbiology and Biotechnology
Sanjiv Sharma, Zhenyi Huang, Michelle Rogers, Martyn Boutelle, Anthony E G Cass
We describe here a minimally invasive glucose biosensor based on a microneedle array electrode fabricated from an epoxy-based negative photoresist (SU8 50) and designed for continuous measurement in the dermal compartment with minimal pain. These minimally invasive, continuous monitoring sensor devices (MICoMS) were produced by casting the structures in SU8 50, crosslinking and then metallising them with platinum or silver to obtain the working and reference electrodes, respectively. The metallised microneedle array electrodes were subsequently functionalised by entrapping glucose oxidase in electropolymerised polyphenol (PP) film...
October 15, 2016: Analytical and Bioanalytical Chemistry
Hao Meng, Yuan Liu, Bruce P Lee
: Mussel adhesive moiety, catechol, has been utilized to design a wide variety of biomaterials. However, the biocompatibility and biological responses associated with the byproducts generated during the curing process of catechol has never been characterized. An in situ curable polymer model system, 4-armed polyethylene glycol polymer end-capped with dopamine (PEG-D4), was used to characterize the production of hydrogen peroxide (H2O2) during the oxidative crosslinking of catechol. Although PEG-D4 cured rapidly (under 30s), catechol continues to polymerize over several hours to form a more densely crosslinked network over time...
October 12, 2016: Acta Biomaterialia
Yang Hu, Weihua Dan, Shanbai Xiong, Yang Kang, Arvind Dhinakar, Jun Wu, Zhipeng Gu
: To improve the mechanical properties and biocompatibility of collagen I matrix, a novel and facile strategy was developed to modify porcine acellular dermal matrix (PADM) via dopamine self-polymerization followed by collagen immobilization to enhance the biological, mechanical and physicochemical properties of PADM. Mechanism study indicated that the polymerization of dopamine onto PADM surface could be regulated by controlling the amount of hydrogen bonds forming between phynol hydroxyl (C-OH) and nitrogen atom (N-C=O) within collagen fibers of PADM...
October 12, 2016: Acta Biomaterialia
Caroline Reynaud, Laura Ferreras, Paola Di Mauro, Casina Kan, Martine Croset, Edith Bonnelye, Floriane Pez, Clémence Thomas, Géraldine Aimont, Antoine E Karnoub, Marie Brevet, Philippe Clezardin
Lysyl oxidase (LOX) is a secreted copper-dependent amine oxidase whose primary function is to drive collagen crosslinking and extracellular matrix stiffness. LOX in colorectal cancer (CRC) synergizes with hypoxia-inducible factor-1 (HIF-1alpha to promote tumor progression. Here we investigated whether LOX/HIF1 endows CRC cells with full competence for aggressive colonization in bone. We show that a high LOX expression in primary tumors from CRC patients was associated with poor clinical outcome, irrespective of HIF-1...
October 14, 2016: Cancer Research
Mirko Nowak, Uwe Freudenberg, Mikhail V Tsurkan, Carsten Werner, Kandice R Levental
Matrix systems used to study complex three-dimensional (3D) cellular processes like mammary epithelial tissue morphogenesis and tumorigenesis ex vivo often require ill-defined biological components, which lead to poor reproducibility and a lack of control over physical parameters. In this study, a well-defined, tunable synthetic biohybrid hydrogel composed of the glycosaminoglycan heparin, star-shaped poly(ethylene glycol) (starPEG), and matrix metalloproteinase- (MMP-) cleavable crosslinkers was applied to dissect the biophysical and biochemical signals promoting human mammary epithelial cell (MEC) morphogenesis...
October 6, 2016: Biomaterials
Younseon Wang, Joseph P Park, Sang Hyeon Hong, Haeshin Lee
A new insect-cuticle- and fruit-browning-mimetic film exhibiting simultaneous self-healing and self-sealing properties only by ambient oxygen without external stimuli is developed. The film is formed at the liquid/air interface via crosslinking of phenolic compounds and poly(amine) chains. The film can be self-healed over a hundred times under ambient air at room temperature without exogenous materials and stimuli.
October 14, 2016: Advanced Materials
Nabil A Siddiqui, Nashiru Billa, Clive J Roberts, Yaa Asantewaa Osei
Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0...
October 8, 2016: Pharmaceutics
Chu Gong, Caicai Lu, Bingqiang Li, Meng Shan, Guolin Wu
Hydrogel systems based on cross-linked polymeric materials with adhesive properties in wet environments have been considered as promising candidates for tissue adhesives. The 3,4-dihydroxyphenylalanine (DOPA) is believed to be responsible for the water-resistant adhesive characteristics of mussel adhesive proteins. Under the inspiration of DOPA containing adhesive proteins, a dopamine-modified poly(α,β-aspartic acid) derivative (PDAEA) was successfully synthesized by successive ring-opening reactions of polysuccinimide (PSI) with dopamine and ethanolamine, and an injectable bioadhesive hydrogel was prepared via simply mixing PDAEA and FeCl3 solutions...
October 14, 2016: Journal of Biomedical Materials Research. Part A
Chintan A Dalwadi, Gayatri C Patel
BACKGROUND: The objective of the study was to investigate the cytotoxicity and cellular uptake of prepared 5-Fluorouracil (5-FU) nanohydrogel formulation using KB oral cancer cell line and VERO fibroblast cell line. METHOD: The biodegradable thermoresponsive modified methylcellulose (MMC) polymer was used for the preparation of nanohydrogel whereas it shows sol-gel phase transition at 36˚C to 40˚C. The physical crosslinking method was used followed by probe sonication for the preparation of 5-FU loaded MMC nanohydrogel...
October 13, 2016: Current Drug Delivery
Kai Hou, Huiyi Wang, Yunyin Lin, Shaohua Chen, Shengyuan Yang, Yanhua Cheng, Benjamin S Hsiao, Meifang Zhu
Hydrogel microfibers have been considered as a potential biomaterial to spatiotemporally biomimic 1D native tissues such as nerves and muscles which are always assembled hierarchically and have anisotropic response to external stimuli. To produce facile hydrogel microfibers in a mathematical manner, a novel dynamic-crosslinking-spinning (DCS) method is demonstrated for direct fabrication of size-controllable fibers from poly(ethylene glycol diacrylate) oligomer in large scale, without microfluidic template and in a biofriendly environment...
October 14, 2016: Macromolecular Rapid Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"