keyword
MENU ▼
Read by QxMD icon Read
search

Crosslinking

keyword
https://www.readbyqxmd.com/read/28532097/influence-of-telopeptides-on-the-structural-and-physical-properties-of-polymeric-and-monomeric-acid-soluble-type-i-collagen
#1
Róisín Holmes, Steve Kirk, Giuseppe Tronci, Xuebin Yang, David Wood
Currently two factors hinder the use of collagen as building block of regenerative devices: the limited mechanical strength in aqueous environment, and potential antigenicity. Polymeric collagen is naturally found in the cross-linked state and is mechanically tougher than the monomeric, acid-soluble collagen ex vivo. The antigenicity of collagen, on the other hand, is mainly ascribed to inter-species variations in amino acid sequences of the non-helical terminal telopeptides. These telopeptides can be removed through enzymatic treatment to produce atelocollagen, although the effect of this cleavage on triple helix organization, amino acidic composition and thermal properties is often disregarded...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532070/ribose-mediated-crosslinking-of-collagen-hydroxyapatite-hybrid-scaffolds-for-bone-tissue-regeneration-using-biomimetic-strategies
#2
Gopal Shankar Krishnakumar, Natalia Gostynska, Elisabetta Campodoni, Massimiliano Dapporto, Monica Montesi, Silvia Panseri, Anna Tampieri, Elizaveta Kon, Maurilio Marcacci, Simone Sprio, Monica Sandri
This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532064/encapsulation-of-lactobacillus-kefiri-in-alginate-microbeads-using-a-double-novel-aerosol-technique
#3
Christian Demitri, Leonardo Lamanna, Egidio De Benedetto, Fabrizio Damiano, Maria Stella Cappello, Luisa Siculella, Alessandro Sannino
Alginate micro beads containing Lactobacillus kefiri (the principal bacteria present in the kefir probiotic drink) were produced by a novel technique based on dual aerosols spaying of alginate based solution and CaCl2 as cross linking agent. Carboxymethylcellulose (CMC) has been also added to the alginate in order to change the physic-chemical properties (viscosity and permeability) of the microbeads. Calcium alginate and CMC are biopolymers that can be used for developing oral drug-delivery systems. These biopolymers have been reported to show a pH-dependent swelling behaviour...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532063/biodegradable-galactitol-based-crosslinked-polyesters-for-controlled-release-and-bone-tissue-engineering
#4
Janeni Natarajan, Sahitya Movva, Giridhar Madras, Kaushik Chatterjee
Various classes of biodegradable polymers have been explored towards finding alternates for the existing treatments for bone disorders. In this framework, two families of polyesters using an array of crosslinkers were synthesized. One was based on galactiol/adipic acid and the other based on galactitol/dodecanedioic acid. The structures of the polymers were confirmed by FTIR and further confirmed by (1)H NMR. DSC showed that the polymers were amorphous and the glass transition temperature increased with increase in crosslinking...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532060/design-and-characterization-of-biodegradable-macroporous-hybrid-inorganic-organic-polymer-for-orthopedic-applications
#5
Sunita PremVictor, Jibin Kunnumpurathu, M G Gayathri Devi, K Remya, Vineeth M Vijayan, Jayabalan Muthu
We have engineered hybrid polymer products based on a hybrid inorganic-organic comacromer consisting of hydroxyapatite (HA), carboxyl terminated polypropylene fumarate (CTPPF), PEG300 and ascorbic acid (AA) as a bone graft material. The integration and the spatial distribution of HA in the polymer backbone were facilitated by silanisation and 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) coupling technique. These comacromers and crosslinked polymer products were characterized by Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), Scanning electron microscopy (SEM) and Raman mapping techniques...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532042/ph-responsive-poly-aspartic-acid-hydrogel-coated-magnetite-nanoparticles-for-biomedical-applications
#6
Jaime Vega-Chacón, María Isabel Amaya Arbeláez, Janaina Habib Jorge, Rodrigo Fernando C Marques, Miguel Jafelicci
A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe3O4) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532035/honey-pva-hybrid-wound-dressings-with-controlled-release-of-antibiotics-structural-physico-mechanical-and-in-vitro-biomedical-studies
#7
Javad Tavakoli, Youhong Tang
Hydrogel/honey hybrids manifest an attractive design with an exclusive therapeutic property that promotes wound healing process. The greater the concentration of honey within the formulation, the better the biomedical properties that will be achieved. However, an increase in the percentage of honey can negatively affect the physico-chemical and mechanical properties of hybrid hydrogels. The need exists, therefore, to prepare wound dressings that contain high honey density with optimal biomedical, mechanical and physicochemical properties...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532022/a-novel-grapheme-oxide-modified-collagen-chitosan-bio-film-for-controlled-growth-factor-release-in-wound-healing-applications
#8
Ting Liu, Weihua Dan, Nianhua Dan, Xinhua Liu, Xuexu Liu, Xu Peng
Collagen-chitosan composite film modified with grapheme oxide (GO) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), termed CC-G-E film, was loaded with basic fibroblast growth factor (bFGF) as the development of an efficacious wound healing device. In this study we report a novel drug delivery system that prevents the initial burst release and loss of bioactivity of drugs in vitro and in vivo applications. The results showed that CC-G-E film possessed improved thermal stability and a higher rate of crosslinking with increased mechanical properties when the dosage of GO was between 0...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28531994/a-facile-one-step-method-for-preparation-of-fe3o4-cs-inh-nanoparticles-as-a-targeted-drug-delivery-for-tuberculosis
#9
Chili Zhao, Xun Liu, Xia Zhang, Hong Yan, Zhilei Qian, Xinghui Li, Zhenye Ma, Qiaorong Han, Chonghua Pei
In this paper, Fe3O4/chitosan/isoniazid magnetic nanoparticles (Fe3O4/CS/INH-MNPs) were prepared as an environmental stimuli-responsive drug-delivery system by automated in situ click technology, in which Fe3O4 magnetic nanoparticles, chitosan and isoniazid were simultaneously in situ crystallized by one-step method. The Fe3O4 magnetic nanoparticles and tripolyphosphate act as stable crosslinkers to produce numerous intermolecular crosslinkages for the mobility of the chitosan chains. Characterization results indicated that the multifunctional drug delivery system with optimized size, excellent loading capacity, well magnetic properties, nontoxicity and pH triggered drug release property is expected to be applied in tuberculosis treatment with excellent magnetic sensitivity and sustained release...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28531843/rapid-ic-ms-ms-determination-of-methylphosphonic-acid-in-urine-of-rats-exposed-to-organophosphorus-nerve-agents
#10
Timur Baygildiev, Alexandra Zatirakha, Igor Rodin, Arkady Braun, Andrey Stavrianidi, Nadezhda Koryagina, Igor Rybalchenko, Oleg Shpigun
A direct approach for the determination of a specific hydrolysis product of organophosphorus nerve agents such as methylphosphonic acid (MPA) in urine by ion chromatography and tandem mass spectrometry (IC-MS/MS) has been developed. The first advantage of the proposed approach is a rapid and simple sample preparation, which does not require a large sample volume, complicated and laborious preconcentration and derivatization steps, and takes less than 7min per sample. The second advantage is the fast and selective IC determination of MPA carried out on a noncommercial anion exchanger based on a poly(styrene-co-divinylbenzene) (PS-DVB) substrate with a high degree of crosslinking and a covalently-bonded branched functional layer, which enables complete resolution of MPA from major urine matrix components and allows one to overcome matrix effects...
May 8, 2017: Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
https://www.readbyqxmd.com/read/28531660/carbon-black-aggregates-cause-endothelial-dysfunction-by-activating-rock
#11
Junyan Yan, Chia-Hsiang Lai, Shih-Chun Candice Lung, Wen-Cheng Wang, Chih-Ching Huang, Guan-Wen Chen, Guangli Suo, Cheng-Tai Choug, Chia-Hua Lin
Carbon black nanoparticles (CBNs) have been associated with the progression of atherosclerosis. CBNs normally enter the bloodstream and crosslink together to form agglomerates. However, most studies have used nano-sized CB particles to clarify the involvement of CBN exposure in CBN-induced endothelial dysfunction. Herein, we studied endothelial toxicity of CBN aggregates (CBA) to human EA.hy926 vascular cells. Cell viability, lactate dehydrogenase leakage, and oxidative stress were affected by the highest concentration of CBA...
May 15, 2017: Journal of Hazardous Materials
https://www.readbyqxmd.com/read/28530809/preparation-of-linear-cryogel-arrays-as-a-microfluidic-platform-for-immunochromatographic-assays
#12
Marc Zinggeler, Patrick Fosso, Yan Hao, Thomas Brandstetter, Jürgen Rühe
We describe a new microfluidic platform to perform immunochromatographic assays. The platform consists of a linear assembly of small, porous cryogel monoliths functionalized with different biomolecules and anchored in an optically transparent capillary, which serves as the microfluidic carrier. This assembly enables fluid flow by capillary action and simple optical detection. Using an in-situ preparation method, individual compartments are generated from small plugs of polymer solutions that are subsequently transformed into individually functionalized cryogel monoliths through a photo induced crosslinking reaction...
May 22, 2017: Analytical Chemistry
https://www.readbyqxmd.com/read/28530131/a-novel-combination-of-a-polycaprolactone-fumarate-pclf-scaffold-with-polyethylene-terephthalate-pet-sutures-for-intra-articular-ligament-regeneration
#13
Joshua Parry, Eric R Wagner, Peter Kok, Mahrokh Dadsetan, Michael J Yaszemski, Andre J van Wijnen, Sanjeev Kakar
Intra-articular ligamentous injuries are typically unrepairable and have limited outcomes after graft reconstruction. A combination of porous polycaprolactone fumarate (PCLF) scaffolds with polyethylene terephthalate (PET) sutures was developed with the goal of regenerating intra-articular ligaments. Scaffolds were fabricated by injecting PCLF over 3D-printed molds containing two strands of PET suture down its central pore followed by crosslinking. Scaffolds were seeded with human mesenchymal stem cells (MSCs) from adipose tissue...
May 20, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28530091/3d-bioprinting-of-highly-thixotropic-alginate-methylcellulose-hydrogel-with-strong-interface-bonding
#14
Huijun Li, Yu Jun Tan, Kah Fai Leong, Lin Li
A robust alginate/methylcellulose (Alg/MC) blend hydrogel, with a strategy to improve adhesion between printed layers, has been fabricated for the first time for 3D bioprinting. The optimized Alg/MC blend hydrogel exhibits highly thixotropic property, great extrudability and stackability. With treatment by a trisodium citrate (TSC) solution, the interfacial bonding between printed layers is significantly improved. The TSC solution acts as a chelating agent to remove the superficial calcium ions at each layer...
May 22, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28529447/self-cleaning-thermoresponsive-p-nipaam-co-amps-double-network-membranes-for-implanted-glucose-biosensors
#15
Ruochong Fei, A Kristen Means, Alexander A Abraham, Andrea K Locke, Gerard L Coté, Melissa A Grunlan
A self-cleaning membrane that periodically rids itself of attached cells to maintain glucose diffusion could extend the lifetime of implanted glucose biosensors. Herein, we evaluate the functionality of thermoresponsive double network (DN) hydrogel membranes based on poly(N-isopropylacrylamide) (PNIPAAm) and an electrostatic co-monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS). DN hydrogels are comprised of a tightly crosslinked, ionized first network [P(NIPAAm-co-AMPS)] containing variable levels of AMPS (100:0-25:75 wt% ratio of NIPAAm:AMPS) and a loosely crosslinked, interpenetrating second network [PNIPAAm]...
August 2016: Macromolecular Materials and Engineering
https://www.readbyqxmd.com/read/28528959/role-of-astakine1-in-regulating-transglutaminase-activity
#16
Ratchanok Sirikharin, Kingkamon Junkunlo, Kenneth Söderhäll, Irene Söderhäll
Transglutaminase (TGase) has been implicated in maintaining the undifferentiated stage of hematopoietic stem cells (HSC) in the crayfish Pacifastacus leniusculus. TGase activity has been reported to be regulated by astakine1, an essential crayfish cytokine for inducing new hemocyte synthesis in hematopoietic tissue (HPT). Here, the role of astakine1 in TGase activity regulation and clotting protein (CP) cross-linking was characterized. A reduction in TGase activity was observed by the addition of purified astakine1 in vitro for both endogenous crayfish TGase and a commercial purified guinea pig liver TGase...
May 18, 2017: Developmental and Comparative Immunology
https://www.readbyqxmd.com/read/28528953/composite-poly-lactic-acid-chitosan-nanofibrous-scaffolds-for-cardiac-tissue-engineering
#17
Yaowen Liu, Shuyao Wang, Rong Zhang
Fibrous scaffolds with different ratios of poly (lactic acid) (PLA) and chitosan were fabricated by conventional electrospinning. After crosslinking by the glutaraldehyde vapor, the structure, mechanical properties, hydrophilicity, and in-fiber chemical interactions of the scaffolds were investigated. We found that the fiber diameter decreased with the concentration of chitosan, while mechanical properties and hydrophilicity improved. In addition, we found that scaffolds with aligned fibers have higher mechanical strength and biocompatibility than scaffolds with randomly oriented fibers...
May 18, 2017: International Journal of Biological Macromolecules
https://www.readbyqxmd.com/read/28528117/composite-elastomeric-polyurethane-scaffolds-incorporating-small-intestinal-submucosa-for-soft-tissue-engineering
#18
Lincui Da, Mei Gong, Anjing Chen, Yi Zhang, Yizhou Huang, Zhijun Guo, Shengfu Li, Jesse Li-Ling, Li Zhang, Huiqi Xie
Although soft tissue replacement has been clinically successful in many cases, the corresponding procedure has many limitations including the lack of resilience and mechanical integrity, significant donor-site morbidity, volume loss with time, and fibrous capsular contracture. These disadvantages can be alleviated by utilizing bio-absorbable scaffolds with high resilience and large strain, which are capable of stimulating natural tissue regeneration. Hence, the chemically crosslinked tridimensional scaffolds obtained by incorporating water-based polyurethane (PU) (which was synthesized from polytetramethylene ether glycol, isophorone diisocyanate, and 2,2-bis(hydroxymethyl) butyric acid) into a bioactive extracellular matrix consisting of small intestinal submucosa (SIS) have been tested in this study to develop a new approach for soft tissue engineering...
May 17, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28526413/tcr-crosslinking-promotes-crk-adaptor-protein-binding-to-tyrosine-phosphorylated-cd3%C3%AE-chain
#19
Guangyu Dong, Rachel Kalifa, Pulak Ranjan Nath, Sigal Gelkop, Noah Isakov
T cell antigen receptor (TCR) binding of a peptide antigen presented by antigen-presenting cells (APCs) in the context of surface MHC molecules initiates signaling events that regulate T cell activation, proliferation and differentiation. A key event in the activation process is the phosphorylation of the conserved tyrosine residues within the CD3 chain immunoreceptor tyrosine-based activation motifs (ITAMs), which operate as docking sites for SH2 domain-containing effector proteins. Phosphorylation of the CD3ζ ITAMs renders the CD3 chain capable of binding the ζ-chain associated protein 70 kDa (ZAP70), a protein tyrosine kinase that is essential for T cell activation...
May 16, 2017: Biochemical and Biophysical Research Communications
https://www.readbyqxmd.com/read/28526343/tannin-immobilized-cellulose-hydrogel-fabricated-by-a-homogeneous-reaction-as-a-potential-adsorbent-for-removing-cationic-organic-dye-from-aqueous-solution
#20
Ying Pei, Shan Chu, Yue Chen, Zhidong Li, Jin Zhao, Shuqi Liu, Xingjun Wu, Jie Liu, Xuejing Zheng, Keyong Tang
Tannin-immobilized cellulose (CT) hydrogels were successfully fabricated by homogeneous immobilization and crosslinking reaction via a simple method. The structures and properties of hydrogels were characterized by SEM and mechanical test. Methlyene Blue (MB) was selected as a cationic dye model, and the adsorption ability of CT hydrogel was evaluated. Tannins immobilized acted as adsorbent sites which combined MB by electrostatic attraction, resulting in the attractive adsorption ability of CT hydrogel. Adsorption kinetics could be better described by the pseudo-second-order model, and the absorption behaviors were in agreement with a Langmuir isotherm...
May 17, 2017: International Journal of Biological Macromolecules
keyword
keyword
16589
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"