keyword
MENU ▼
Read by QxMD icon Read
search

autism gene network

keyword
https://www.readbyqxmd.com/read/28192273/gabaa-receptor-subtypes-in-the-mouse-brain-regional-mapping-and-diazepam-receptor-occupancy-by-in-vivo-18-f-flumazenil-pet
#1
Adrienne Müller Herde, Dietmar Benke, William T Ralvenius, Linjing Mu, Roger Schibli, Hanns Ulrich Zeilhofer, Stefanie D Krämer
Classical benzodiazepines, which are widely used as sedatives, anxiolytics and anticonvulsants, exert their therapeutic effects through interactions with heteropentameric GABAA receptors composed of two α, two β and one γ2 subunit. Their high affinity binding site is located at the interface between the γ2 and the adjacent α subunit. The α-subunit gene family consists of six members and receptors can be homomeric or mixed with respect to the α-subunits. Previous work has suggested that benzodiazepine binding site ligands with selectivity for individual GABAA receptor subtypes, as defined by the benzodiazepine-binding α subunit, may have fewer side effects and may even be effective in diseases, such as schizophrenia, autism or chronic pain, that do not respond well to classical benzodiazepines...
February 10, 2017: NeuroImage
https://www.readbyqxmd.com/read/28191889/targeted-sequencing-identifies-91-neurodevelopmental-disorder-risk-genes-with-autism-and-developmental-disability-biases
#2
Holly A F Stessman, Bo Xiong, Bradley P Coe, Tianyun Wang, Kendra Hoekzema, Michaela Fenckova, Malin Kvarnung, Jennifer Gerdts, Sandy Trinh, Nele Cosemans, Laura Vives, Janice Lin, Tychele N Turner, Gijs Santen, Claudia Ruivenkamp, Marjolein Kriek, Arie van Haeringen, Emmelien Aten, Kathryn Friend, Jan Liebelt, Christopher Barnett, Eric Haan, Marie Shaw, Jozef Gecz, Britt-Marie Anderlid, Ann Nordgren, Anna Lindstrand, Charles Schwartz, R Frank Kooy, Geert Vandeweyer, Celine Helsmoortel, Corrado Romano, Antonino Alberti, Mirella Vinci, Emanuela Avola, Stefania Giusto, Eric Courchesne, Tiziano Pramparo, Karen Pierce, Srinivasa Nalabolu, David G Amaral, Ingrid E Scheffer, Martin B Delatycki, Paul J Lockhart, Fereydoun Hormozdiari, Benjamin Harich, Anna Castells-Nobau, Kun Xia, Hilde Peeters, Magnus Nordenskjöld, Annette Schenck, Raphael A Bernier, Evan E Eichler
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100)...
February 13, 2017: Nature Genetics
https://www.readbyqxmd.com/read/28137726/molecular-analyses-of-neurogenic-defects-in-a-human-pluripotent-stem-cell-model-of-fragile-x-syndrome
#3
Michael J Boland, Kristopher L Nazor, Ha T Tran, Attila Szücs, Candace L Lynch, Ryder Paredes, Flora Tassone, Pietro Paolo Sanna, Randi J Hagerman, Jeanne F Loring
New research suggests that common pathways are altered in many neurodevelopmental disorders including autism spectrum disorder; however, little is known about early molecular events that contribute to the pathology of these diseases. The study of monogenic, neurodevelopmental disorders with a high incidence of autistic behaviours, such as fragile X syndrome, has the potential to identify genes and pathways that are dysregulated in autism spectrum disorder as well as fragile X syndrome. In vitro generation of human disease-relevant cell types provides the ability to investigate aspects of disease that are impossible to study in patients or animal models...
January 29, 2017: Brain: a Journal of Neurology
https://www.readbyqxmd.com/read/28130356/a-novel-human-camk2a-mutation-disrupts-dendritic-morphology-and-synaptic-transmission-and-causes-asd-related-behaviors
#4
Jason R Stephenson, Xiaohan Wang, Tyler L Perfitt, Walker P Parrish, Brian C Shonesy, Christian R Marks, Douglas P Mortlock, Terunaga Nakagawa, James S Sutcliffe, Roger J Colbran
: Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation...
January 27, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
https://www.readbyqxmd.com/read/28118382/integrative-variation-analysis-reveals-that-a-complex-genotype-may-specify-phenotype-in-siblings-with-syndromic-autism-spectrum-disorder
#5
Viviane Neri de Souza Reis, João Paulo Kitajima, Ana Carolina Tahira, Ana Cecília Feio-Dos-Santos, Rodrigo Ambrósio Fock, Bianca Cristina Garcia Lisboa, Sérgio Nery Simões, Ana C V Krepischi, Carla Rosenberg, Naila Cristina Lourenço, Maria Rita Passos-Bueno, Helena Brentani
It has been proposed that copy number variations (CNVs) are associated with increased risk of autism spectrum disorder (ASD) and, in conjunction with other genetic changes, contribute to the heterogeneity of ASD phenotypes. Array comparative genomic hybridization (aCGH) and exome sequencing, together with systems genetics and network analyses, are being used as tools for the study of complex disorders of unknown etiology, especially those characterized by significant genetic and phenotypic heterogeneity. Therefore, to characterize the complex genotype-phenotype relationship, we performed aCGH and sequenced the exomes of two affected siblings with ASD symptoms, dysmorphic features, and intellectual disability, searching for de novo CNVs, as well as for de novo and rare inherited point variations-single nucleotide variants (SNVs) or small insertions and deletions (indels)-with probable functional impacts...
2017: PloS One
https://www.readbyqxmd.com/read/28032018/a-multi-target-small-molecule-for-targeted-transcriptional-activation-of-therapeutically-significant-nervous-system-genes
#6
Yulei Wei, Ganesh N Pandian, Tingting Zou, Junichi Taniguchi, Shinsuke Sato, Gengo Kashiwazaki, Thangavel Vaijayanthi, Takuya Hidaka, Toshikazu Bando, Hiroshi Sugiyama
An integrated multi-target small molecule capable of altering dynamic epigenetic and transcription programs associated with the brain and nervous system has versatile applications in the regulation of therapeutic and cell-fate genes. Recently, we have been constructing targeted epigenetic ON switches by integrating sequence-specific DNA binding pyrrole-imidazole polyamides with a potent histone deacetylase inhibitor SAHA. Here, we identified a DNA-based epigenetic ON switch termed SAHA-L as the first-ever multi-target small molecule capable of inducing transcription programs associated with the human neural system and brain synapses networks in BJ human foreskin fibroblasts and 201B7-iPS cells...
December 2016: ChemistryOpen
https://www.readbyqxmd.com/read/28017919/relationship-of-a-common-oxtr-gene-variant-to-brain-structure-and-default-mode-network-function-in-healthy-humans
#7
Junping Wang, Meredith N Braskie, George W Hafzalla, Joshua Faskowitz, Katie L McMahon, Greig I de Zubicaray, Margaret J Wright, Chunshui Yu, Paul M Thompson
A large body of research suggests that oxytocin receptor (OXTR) gene polymorphisms may influence both social behaviors and psychiatric conditions related to social deficits, such as autism spectrum disorders (ASDs), schizophrenia, and mood and anxiety disorders. However, the neural mechanism underlying these associations is still unclear. Relative to controls, patients with these psychiatric conditions show differences in brain structure, and in resting state fMRI (rs-fMRI) signal synchronicity among default mode network (DMN) regions (also known as functional connectivity)...
February 15, 2017: NeuroImage
https://www.readbyqxmd.com/read/28000768/knowledge-guided-bioinformatics-model-for-identifying-autism-spectrum-disorder-diagnostic-microrna-biomarkers
#8
Li Shen, Yuxin Lin, Zhandong Sun, Xuye Yuan, Luonan Chen, Bairong Shen
Autism spectrum disorder (ASD) is a severe neurodevelopmental disease with a high incidence and effective biomarkers are urgently needed for its diagnosis. A few previous studies have reported the detection of miRNA biomarkers for autism diagnosis, especially those based on bioinformatics approaches. In this study, we developed a knowledge-guided bioinformatics model for identifying autism miRNA biomarkers. We downloaded gene expression microarray data from the GEO Database and extracted genes with expression levels that differed in ASD and the controls...
December 21, 2016: Scientific Reports
https://www.readbyqxmd.com/read/27983596/estrogenic-endocrine-disrupting-chemicals-influencing-nrf1-regulated-gene-networks-in-the-development-of-complex-human-brain-diseases
#9
REVIEW
Mark Preciados, Changwon Yoo, Deodutta Roy
During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese...
December 13, 2016: International Journal of Molecular Sciences
https://www.readbyqxmd.com/read/27932026/gene-environment-interactions-in-cortical-interneuron-development-and-dysfunction-a-review-of-preclinical-studies
#10
REVIEW
Lydia J Ansen-Wilson, Robert J Lipinski
Cortical interneurons (cINs) are a diverse group of locally projecting neurons essential to the organization and regulation of neural networks. Though they comprise only ∼20% of neurons in the neocortex, their dynamic modulation of cortical activity is requisite for normal cognition and underlies multiple aspects of learning and memory. While displaying significant morphological, molecular, and electrophysiological variability, cINs collectively function to maintain the excitatory-inhibitory balance in the cortex by dampening hyperexcitability and synchronizing activity of projection neurons, primarily through use of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA)...
December 5, 2016: Neurotoxicology
https://www.readbyqxmd.com/read/27919067/genome-wide-changes-in-lncrna-splicing-and-regional-gene-expression-patterns-in-autism
#11
Neelroop N Parikshak, Vivek Swarup, T Grant Belgard, Manuel Irimia, Gokul Ramaswami, Michael J Gandal, Christopher Hartl, Virpi Leppa, Luis de la Torre Ubieta, Jerry Huang, Jennifer K Lowe, Benjamin J Blencowe, Steve Horvath, Daniel H Geschwind
Autism spectrum disorder (ASD) involves substantial genetic contributions. These contributions are profoundly heterogeneous but may converge on common pathways that are not yet well understood. Here, through post-mortem genome-wide transcriptome analysis of the largest cohort of samples analysed so far, to our knowledge, we interrogate the noncoding transcriptome, alternative splicing, and upstream molecular regulators to broaden our understanding of molecular convergence in ASD. Our analysis reveals ASD-associated dysregulation of primate-specific long noncoding RNAs (lncRNAs), downregulation of the alternative splicing of activity-dependent neuron-specific exons, and attenuation of normal differences in gene expression between the frontal and temporal lobes...
December 15, 2016: Nature
https://www.readbyqxmd.com/read/27897003/de-novo-mutations-in-autism-implicate-the-synaptic-elimination-network
#12
Guhan Ram Venkataraman, Chloe O'Connell, Fumiko Egawa, Dorna Kashef-Haghighi, Dennis P Wall
Autism has been shown to have a major genetic risk component; the architecture of documented autism in families has been over and again shown to be passed down for generations. While inherited risk plays an important role in the autistic nature of children, de novo (germline) mutations have also been implicated in autism risk. Here we find that autism de novo variants verified and published in the literature are Bonferroni-significantly enriched in a gene set implicated in synaptic elimination. Additionally, several of the genes in this synaptic elimination set that were enriched in protein-protein interactions (CACNA1C, SHANK2, SYNGAP1, NLGN3, NRXN1, and PTEN) have been previously confirmed as genes that confer risk for the disorder...
2016: Pacific Symposium on Biocomputing
https://www.readbyqxmd.com/read/27893730/fluorescent-nanodiamond-tracking-reveals-intraneuronal-transport-abnormalities-induced-by-brain-disease-related-genetic-risk-factors
#13
Simon Haziza, Nitin Mohan, Yann Loe-Mie, Aude-Marie Lepagnol-Bestel, Sophie Massou, Marie-Pierre Adam, Xuan Loc Le, Julia Viard, Christine Plancon, Rachel Daudin, Pascale Koebel, Emilie Dorard, Christiane Rose, Feng-Jen Hsieh, Chih-Che Wu, Brigitte Potier, Yann Herault, Carlo Sala, Aiden Corvin, Bernadette Allinquant, Huan-Cheng Chang, François Treussart, Michel Simonneau
Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs)...
November 28, 2016: Nature Nanotechnology
https://www.readbyqxmd.com/read/27892958/a-scored-human-protein-protein-interaction-network-to-catalyze-genomic-interpretation
#14
Taibo Li, Rasmus Wernersson, Rasmus B Hansen, Heiko Horn, Johnathan Mercer, Greg Slodkowicz, Christopher T Workman, Olga Rigina, Kristoffer Rapacki, Hans H Stærfeldt, Søren Brunak, Thomas S Jensen, Kasper Lage
Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap, or InWeb_IM) with severalfold more interactions (>500,000) and better functional biological relevance than comparable resources. We illustrate that InWeb_InBioMap enables functional interpretation of >4,700 cancer genomes and genes involved in autism...
January 2017: Nature Methods
https://www.readbyqxmd.com/read/27878759/loss-of-adenylyl-cyclase-type-5-in-the-dorsal-striatum-produces-autistic-like-behaviors
#15
Hannah Kim, Yunjin Lee, Jin-Young Park, Ji-Eun Kim, Tae-Kyung Kim, Juli Choi, Jung-Eun Lee, Eun-Hwa Lee, Daesoo Kim, Kyoung-Shim Kim, Pyung-Lim Han
Autism spectrum disorders (ASDs) are a heterogeneous group of psychiatric illness characterized by common core symptoms including sociability deficits and stereotyped behaviors. ASD is caused by various genetic and non-genetic factors. The genetic effects of autism-related genes are usually global and are presented with multiple symptoms, which hamper understanding of the mechanism through which the diverse causes of ASD produce common symptoms. In the present study, we demonstrate that genetic or molecular disruption of an array of molecular networks centered on adenylyl cyclase type-5 (AC5 or ADCY5) in the dorsal striatum produces autistic-like behaviors...
November 23, 2016: Molecular Neurobiology
https://www.readbyqxmd.com/read/27862943/blood-transcriptomic-comparison-of-individuals-with-and-without-autism-spectrum-disorder-a-combined-samples-mega-analysis
#16
Daniel S Tylee, Jonathan L Hess, Thomas P Quinn, Rahul Barve, Hailiang Huang, Yanli Zhang-James, Jeffrey Chang, Boryana S Stamova, Frank R Sharp, Irva Hertz-Picciotto, Stephen V Faraone, Sek Won Kong, Stephen J Glatt
Blood-based microarray studies comparing individuals affected with autism spectrum disorder (ASD) and typically developing individuals help characterize differences in circulating immune cell functions and offer potential biomarker signal. We sought to combine the subject-level data from previously published studies by mega-analysis to increase the statistical power. We identified studies that compared ex vivo blood or lymphocytes from ASD-affected individuals and unrelated comparison subjects using Affymetrix or Illumina array platforms...
November 11, 2016: American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics
https://www.readbyqxmd.com/read/27846841/integrative-transcriptome-network-analysis-of-ipsc-derived-neurons-from-schizophrenia-and-schizoaffective-disorder-patients-with-22q11-2-deletion
#17
Mingyan Lin, Erika Pedrosa, Anastasia Hrabovsky, Jian Chen, Benjamin R Puliafito, Stephanie R Gilbert, Deyou Zheng, Herbert M Lachman
BACKGROUND: Individuals with 22q11.2 Deletion Syndrome (22q11.2 DS) are a specific high-risk group for developing schizophrenia (SZ), schizoaffective disorder (SAD) and autism spectrum disorders (ASD). Several genes in the deleted region have been implicated in the development of SZ, e.g., PRODH and DGCR8. However, the mechanistic connection between these genes and the neuropsychiatric phenotype remains unclear. To elucidate the molecular consequences of 22q11.2 deletion in early neural development, we carried out RNA-seq analysis to investigate gene expression in early differentiating human neurons derived from induced pluripotent stem cells (iPSCs) of 22q11...
November 15, 2016: BMC Systems Biology
https://www.readbyqxmd.com/read/27845777/newer-insights-into-the-role-of-mirna-a-tiny-genetic-tool-in-psychiatric-disorders-focus-on-post-traumatic-stress-disorder
#18
REVIEW
V V Giridharan, R A Thandavarayan, G R Fries, C Walss-Bass, T Barichello, N J Justice, M K Reddy, J Quevedo
Post-traumatic stress disorder (PTSD) is a mental disorder occurring in about 2-9% of individuals after their exposure to life-threatening events, such as severe accidents, sexual abuse, combat or a natural catastrophe. Because PTSD patients are exposed to trauma, it is likely that epigenetic modifications have an important role in disease development and prognosis. For the past two decades, abnormal expression of the epigenetic regulators microRNAs (miRs) and miR-mediated gene regulation have been given importance in a variety of human diseases, such as cancer, heart disease and viral infection...
November 15, 2016: Translational Psychiatry
https://www.readbyqxmd.com/read/27843152/additive-effects-of-oxytocin-receptor-gene-polymorphisms-on-reward-circuitry-in-youth-with-autism
#19
L M Hernandez, K Krasileva, S A Green, L E Sherman, C Ponting, R McCarron, J K Lowe, D H Geschwind, S Y Bookheimer, M Dapretto
Several common alleles in the oxytocin receptor gene (OXTR) are associated with altered brain function in reward circuitry in neurotypical adults and may increase risk for autism spectrum disorders (ASD). Yet, it is currently unknown how variation in the OXTR relates to brain functioning in individuals with ASD, and, critically, whether neural endophenotypes vary as a function of aggregate genetic risk. Here, for we believe the first time, we use a multi-locus approach to examine how genetic variation across several OXTR single-nucleotide polymorphisms (SNPs) affect functional connectivity of the brain's reward network...
November 15, 2016: Molecular Psychiatry
https://www.readbyqxmd.com/read/27799067/identification-of-a-rai1-associated-disease-network-through-integration-of-exome-sequencing-transcriptomics-and-3d-genomics
#20
Maria Nicla Loviglio, Christine R Beck, Janson J White, Marion Leleu, Tamar Harel, Nicolas Guex, Anne Niknejad, Weimin Bi, Edward S Chen, Isaac Crespo, Jiong Yan, Wu-Lin Charng, Shen Gu, Ping Fang, Zeynep Coban-Akdemir, Chad A Shaw, Shalini N Jhangiani, Donna M Muzny, Richard A Gibbs, Jacques Rougemont, Ioannis Xenarios, James R Lupski, Alexandre Reymond
BACKGROUND: Smith-Magenis syndrome (SMS) is a developmental disability/multiple congenital anomaly disorder resulting from haploinsufficiency of RAI1. It is characterized by distinctive facial features, brachydactyly, sleep disturbances, and stereotypic behaviors. METHODS: We investigated a cohort of 15 individuals with a clinical suspicion of SMS who showed neither deletion in the SMS critical region nor damaging variants in RAI1 using whole exome sequencing. A combination of network analysis (co-expression and biomedical text mining), transcriptomics, and circularized chromatin conformation capture (4C-seq) was applied to verify whether modified genes are part of the same disease network as known SMS-causing genes...
November 1, 2016: Genome Medicine
keyword
keyword
16556
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"