keyword
MENU ▼
Read by QxMD icon Read
search

Cas9

keyword
https://www.readbyqxmd.com/read/28646452/dosage-effects-of-zp2-and-zp3-heterozygous-mutations-cause-human-infertility
#1
Wenqiang Liu, Kunming Li, Dandan Bai, Jiqing Yin, Yuanyuan Tang, Fengli Chi, Linfeng Zhang, Yu Wang, Jiaping Pan, Shanshan Liang, Yi Guo, Jingling Ruan, Xiaochen Kou, Yanhong Zhao, Hong Wang, Jiayu Chen, Xiaoming Teng, Shaorong Gao
The zona pellucida (ZP) is an extracellular matrix universally surrounding mammalian eggs, which is essential for oogenesis, fertilization, and pre-implantation embryo development. Here, we identified two novel heritable mutations of ZP2 and ZP3, both occurring in an infertile female patient with ZP-abnormal eggs. Mouse models with the same mutations were generated by CRISPR/Cas9 gene editing system, and oocytes obtained from female mice with either single heterozygous mutation showed approximately half of the normal ZP thickness compared to wild-type oocytes...
June 24, 2017: Human Genetics
https://www.readbyqxmd.com/read/28646406/podocytes-and-the-quest-for-precision-medicines-for-kidney-diseases
#2
REVIEW
Peter Mundel
In this review, I describe a 30-year journey in the quest for precision medicines for patients with kidney diseases. In 1987, when I started my reseach career, most scientists studying glomerular disease biology were focused on mesangial cells. The crucial role of the podocyte in many kidney diseases characterized by proteinuria, including focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, had not yet been recognized. We were not aware of genetic causes or drivers of kidney diseases nor of molecular markers and cell culture systems for mechanistic studies of podocyte biology...
June 23, 2017: Pflügers Archiv: European Journal of Physiology
https://www.readbyqxmd.com/read/28646206/crispr-cas9-mediated-genome-editing-via-postnatal-administration-of-aav-vector-cures-haemophilia-b-mice
#3
Tsukasa Ohmori, Yasumitsu Nagao, Hiroaki Mizukami, Asuka Sakata, Shin-Ichi Muramatsu, Keiya Ozawa, Shin-Ichi Tominaga, Yutaka Hanazono, Satoshi Nishimura, Osamu Nureki, Yoichi Sakata
Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Administration of adeno-associated virus (AAV) 8 vector harbouring Staphylococcus aureus Cas9 (SaCas9) and single guide RNA (sgRNA) to wild-type adult mice induced a double-strand break (DSB) at the target site of F9 in hepatocytes, sufficiently developing haemophilia B...
June 23, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28646116/tonic-b-cell-receptor-signaling-in-diffuse-large-b-cell-lymphoma
#4
Ondrej Havranek, Jingda Xu, Stefan Köhrer, Zhiqiang Wang, Lisa Becker, Justin M Comer, Jared Henderson, Wencai Ma, John Man Chun Ma, Jason R Westin, Dipanjan Ghosh, Nicholas Shinners, Luhong Sun, Allen F Yi, Anusha R Karri, Jan A Burger, Tomasz Zal, R Eric Davis
We used CRISPR/Cas9-mediated genomic modification to investigate B-cell receptor (BCR) signaling in cell lines of diffuse large B-cell lymphoma (DLBCL). Three manipulations that altered BCR genes without affecting surface BCR levels showed that BCR signaling differs between the germinal center B-cell (GCB) subtype, which is insensitive to BTK inhibition by ibrutinib, and the activated B-cell (ABC) subtype. Replacing antigen-binding BCR regions had no effect on BCR signaling in GCB-DLBCL lines, reflecting this subtype's exclusive use of tonic BCR signaling...
June 23, 2017: Blood
https://www.readbyqxmd.com/read/28646112/crispr-cas12a-assisted-recombineering-in-bacteria
#5
Mei-Yi Yan, Hai-Qin Yan, Gai-Xian Ren, Ju-Ping Zhao, Xiao-Peng Guo, Yi-Cheng Sun
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in Escherichia coli, Yersinia pestis, and Mycobacterium smegmatis Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria...
June 23, 2017: Applied and Environmental Microbiology
https://www.readbyqxmd.com/read/28645099/harnessing-the-natural-diversity-and-in-vitro-evolution-of-cas9-to-expand-the-genome-editing-toolbox
#6
REVIEW
Tautvydas Karvelis, Giedrius Gasiunas, Virginijus Siksnys
In the past few years, the Cas9 endonuclease from the type II CRISPR-Cas bacterial antiviral defense system has revolutionized the genome editing field. Guided by an RNA molecule, Cas9 can be reprogrammed to target almost any DNA sequence: the only limitation being the short nucleotide sequence in the vicinity of the target, termed the PAM, which is characteristic for each Cas9 protein. Streptococcus pyogenes Cas9 which recognizes the NGG PAM is currently most widely used for genome manipulation. However, Cas9 orthologues and engineered Cas9 variants offer expanded genome targeting capabilities, improved specificity and biochemical properties...
June 20, 2017: Current Opinion in Microbiology
https://www.readbyqxmd.com/read/28644958/translating-cancer-epigenomics-into-the-clinic-focus-on-lung-cancer
#7
REVIEW
Josep Mari-Alexandre, Angel Diaz-Lagares, Maria Villalba, Oscar Juan, Ana B Crujeiras, Alfonso Calvo, Juan Sandoval
Epigenetic deregulation is increasingly being recognized as a hallmark of cancer. Recent studies have identified many new epigenetic biomarkers, some of which are being introduced into clinical practice for diagnosis, molecular classification, prognosis or prediction of response to therapies. O-6-methylguanine-DNA methyltransferase gene is the most clinically advanced epigenetic biomarker as it predicts the response to temozolomide and carmustine in gliomas. Therefore, epigenomics may represent a novel and promising tool for precision medicine, and in particular, the detection of epigenomic biomarkers in liquid biopsies will be of great interest for monitoring diseases in patients...
June 2, 2017: Translational Research: the Journal of Laboratory and Clinical Medicine
https://www.readbyqxmd.com/read/28643790/corrigendum-muscle-specific-crispr-cas9-dystrophin-gene-editing-ameliorates-pathophysiology-in-a-mouse-model-for-duchenne-muscular-dystrophy
#8
Niclas E Bengtsson, John K Hall, Guy L Odom, Michael P Phelps, Colin R Andrus, R David Hawkins, Stephen D Hauschka, Joel R Chamberlain, Jeffrey S Chamberlain
This corrects the article DOI: 10.1038/ncomms14454.
June 23, 2017: Nature Communications
https://www.readbyqxmd.com/read/28643261/genome-editing-of-silkworms
#9
Takuya Tsubota, Hideki Sezutsu
Silkworm is a lepidopteran insect that has been used as a model for a wide variety of biological studies. The microinjection technique is available and it is possible to cause transgenesis as well as target gene disruption via the genome editing technique. TALEN-mediated knock-out is especially effective in this species. We also succeeded in the precise and efficient integration of a donor vector using the Precise Integration into Target Chromosome (PITCh) method. Here, we describe protocols for ZFN, TALEN, and CRISPR/Cas9-mediated genome editing as well as the PITCh technique in the silkworm...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643258/crispr-cas9-mediated-targeted-knockin-of-exogenous-reporter-genes-in-zebrafish
#10
Atsuo Kawahara
Genome editing technologies such as ZFN, TALEN, and CRISPR/Cas9 efficiently induce DNA double-stranded breaks (DSBs) at a targeted genomic locus, often resulting in a frameshift-mediated target gene disruption. It remains difficult to perform targeted integration of exogenous genes by genome editing technologies. DSBs can be restored through DNA repair mechanisms, such as non-homologous end joining (NHEJ), microhomology-mediated end joining (MMEJ), and homologous recombination (HR). It is well known that HR facilitates homology-dependent integration of donor DNA template into a targeted locus...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643257/genome-editing-mediated-by-primordial-germ-cell-in-chicken
#11
Jae Yong Han, Hong Jo Lee
Rapid development of genome editing technology has facilitated the studies on exploring specific gene functions and establishment of model animals. In livestock, the technology has contributed to create high value in industry fields, e.g., enhancing productivity or acquiring the resistance against disease. Meanwhile, genome editing in avian species has been emphasized because of their applicable possibilities in terms of highly productive chickens, disease-controlled avian lines, and development of novel biological models...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643256/genome-editing-of-monkey
#12
Zhen Liu, Yijun Cai, Qiang Sun
Gene-modified monkey models would be particularly valuable in biomedical and neuroscience research. Virus-based transgenic and programmable nucleases-based site-specific gene editing methods (TALEN, CRISPR-cas9) enable the generation of gene-modified monkeys with gain or loss of function of specific genes. Here, we describe the generation of transgenic and knock-out (KO) monkeys with high efficiency by lentivirus and programmable nucleases.
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643255/genome-editing-of-pig
#13
Masahito Watanabe, Hiroshi Nagashima
Pigs are important livestock for food and have been used in various biomedical studies, particularly translational research, as experimental animals because of their anatomical and physiological similarity to humans. The recent development of genome editing techniques, such as ZFN, TALEN, and CRISPR/Cas9, has rapidly expanded the use of genome editing tools in a variety of animals, resulting in the relatively easy and efficient generation of gene knock-out pigs. In the past few years, there has been a sustained increase in reports describing the development of genetically modified pigs...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643254/gene-targeting-in-rabbits-single-step-generation-of-knock-out-rabbits-by-microinjection-of-crispr-cas9-plasmids
#14
Yoshihiro Kawano, Arata Honda
The development of genome editing technology has allowed gene disruptions to be achieved in various animal species and has been beneficial to many mammals. Gene disruption using pluripotent stem cells is difficult to achieve in rabbits, but thanks to advances in genome editing technology, a number of gene disruptions have been conducted. This paper describes a simple and easy method for carrying out gene disruptions in rabbits using CRISPR/Cas9 in which the gene to be disrupted is marked, the presence or absence of off-target candidates is checked, and a plasmid allowing simultaneous expression of Cas9 and sgRNA is constructed...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643253/genome-editing-of-rat
#15
Takehito Kaneko
Many genetically engineered rat strains have been produced for biomedical research. The simple and quick production of knock-out and knock-in rats is currently possible using genome editing techniques incorporating zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Genome-edited animals have been produced by the introduction of endonucleases into embryos using conventional microinjection and a new electroporation method named Technique for Animal Knockout system by Electroporation (TAKE)...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643251/genome-editing-in-mouse-and-rat-by-electroporation
#16
Takehito Kaneko
Many knock-out/knock-in mouse and rat strains have been produced by genome editing techniques using engineered endonucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Microinjection of engineered endonucleases into pronuclear-stage embryos is required to produce genome-edited rodents and the development of easy, rapid, and high-efficiency methods that do not require special skills such as microinjection is needed...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643250/genome-editing-in-mouse-zygotes-and-embryonic-stem-cells-by-introducing-sgrna-cas9-expressing-plasmids
#17
Taichi Noda, Asami Oji, Masahito Ikawa
In mammalian cells, genome editing with the single guide RNA (sgRNA)/Cas9 complex allows for high targeting efficiency within a relatively short time frame with the added benefits of being low cost and easy to design. sgRNA/Cas9-mediated editing in mouse zygotes has accelerated the analysis of gene functions and the generation of mouse models of human diseases. Despite the benefits, this method still suffers from several problems, such as mosaicism in the founder generation which complicates genotyping and phenotypical analyses, and the low efficiency of more complicated genome editing...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643249/genome-editing-of-mouse-by-cytoplasmic-injection
#18
Takuro Horii, Izuho Hatada
CRISPR/Cas enables rapid production of genome-edited animals. The Cas9/gRNA component can be introduced to fertilized eggs in several ways. Here, we provide an instructional guide for the generation of knockout mice by cytoplasmic injection using in vitro transcribed Cas9 and gRNA.
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643248/computational-prediction-of-crispr-cas9-target-sites-reveals-potential-off-target-risks-in-human-and-mouse
#19
Qingbo Wang, Kumiko Ui-Tei
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system is a prominent genome engineering technology. In the CRISPR/Cas system, the RNA-guided endonuclease Cas protein introduces a DNA double-stranded break at the genome position recognized by a guide RNA (gRNA) based on complementary base-pairing of about 20-nucleotides in length. The 8- or 12-mer gRNA sequence in the proximal region is especially important for target recognition, and the genes with sequence complementarity to such regions are often disrupted...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28643247/crispr-cas9
#20
Izuho Hatada, Takuro Horii
CRISPR/Cas9 is a novel method that has become the most widely used genome editing technology around the world. Its widespread adoption is largely due to its simplicity and easy of use. Here, we introduce the construction of vectors and genome editing of the target gene in cells expressing the CRISPR/Cas9 system.
2017: Methods in Molecular Biology
keyword
keyword
163
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"