keyword
MENU ▼
Read by QxMD icon Read
search

Crispr streptomyces

keyword
https://www.readbyqxmd.com/read/30087666/crispr-cas9-based-editing-of-streptomyces-for-discovery-characterization-and-production-of-natural-products
#1
REVIEW
Weixin Tao, Anna Yang, Zixin Deng, Yuhui Sun
Microbial natural products (NPs) especially of the Streptomyces genus have been regarded as an unparalleled resource for pharmaceutical drugs discovery. Moreover, recent progress in sequencing technologies and computational resources further reinforces to identify numerous NP biosynthetic gene clusters (BGCs) from the genomes of Streptomyces . However, the majority of these BGCs are silent or poorly expressed in native strains and remain to be activated and investigated, which relies heavily on efficient genome editing approaches...
2018: Frontiers in Microbiology
https://www.readbyqxmd.com/read/30030786/comparative-analysis-of-crispr-loci-found-in-streptomyces-genome-sequences
#2
Jinqi Zhang, Xiaobin Li, Zixin Deng, Hong-Yu Ou
The interspaced short palindromic repeats (CRISPR) system is an immune system widely distributed in prokaryotes, resisting the invasion of the foreign mobile genetic elements like phages or plasmids. In this study, we present the comparative analysis of 182 CRISPR loci found in 46 publicly available complete genome sequences of Streptomyces. Overall, nine direct repeats (DRs) groups are identified while all the 2104 spacers are divided into three main groups according to the multiple sequence alignment. Only 11 spacers are identical with parts of 10 plasmid sequences, which indicates a possible origin...
July 20, 2018: Interdisciplinary Sciences, Computational Life Sciences
https://www.readbyqxmd.com/read/29980561/crispr-cpf1-assisted-multiplex-genome-editing-and-transcriptional-repression-in-streptomyces
#3
Lei Li, Keke Wei, Guosong Zheng, Xiaocao Liu, Shaoxin Chen, Weihong Jiang, Yinhua Lu
Streptomyces has strong capability to produce a large number of bioactive natural products and remains invaluable sources for the discovery of novel drug leads. Although the Streptococcus pyogenes ( Sp ) CRISPR-Cas9-assisted genome editing tool has been developed for rapid genetic engineering in Streptomyces , it has a number of limitations, including the toxicity of Sp Cas9 expression in some important industrial Streptomyces strains and the need for complex expression constructs when targeting multiple genomic loci...
July 6, 2018: Applied and Environmental Microbiology
https://www.readbyqxmd.com/read/29862648/crispr-dcas9-mediated-multiplex-gene-repression-in-streptomyces
#4
Yawei Zhao, Lei Li, Guosong Zheng, Weihong Jiang, Zixin Deng, Zhijun Wang, Yinhua Lu
Streptomycetes are Gram-positive bacteria with the capacity to produce copious bioactive secondary metabolites, which are the main source of medically and industrially relevant drugs. However, genetic manipulation of Streptomyces strains is much more difficult than other model microorganisms like Escherichia coli and Saccharomyces cerevisiae. Recently, CRISPR/Cas9 or dCas9-mediated genetic manipulation tools have been developed and facilitated Streptomyces genome editing. However, till now, CRISPR/dCas9-based interference system (CRISPRi) is only designed to repress single gene expression...
June 3, 2018: Biotechnology Journal
https://www.readbyqxmd.com/read/29799651/auroramycin-a-potent-antibiotic-from-streptomyces-roseosporus-by-crispr-cas9-activation
#5
Yee Hwee Lim, Fong Tian Wong, Wan Lin Yeo, Kuan Chieh Ching, Yi Wee Lim, Elena Heng, Shuwen Chen, De-Juin Tsai, Tsai-Ling Lauderdale, Kak-Shan Shia, Ying Swan Ho, Shawn Hoon, Ee Lui Ang, Mingzi M Zhang, Huimin Zhao
Silent biosynthetic gene clusters represent a potentially rich source of new bioactive compounds. We report the discovery, characterization, and biosynthesis of a novel doubly glycosylated 24-membered polyene macrolactam from a silent biosynthetic gene cluster in Streptomyces roseosporus by using the CRISPR-Cas9 gene cluster activation strategy. Structural characterization of this polyketide, named auroramycin, revealed a rare isobutyrylmalonyl extender unit and a unique pair of amino sugars. Relative and absolute stereochemistry were determined by using a combination of spectroscopic analyses, chemical derivatization, and computational analysis...
May 25, 2018: Chembiochem: a European Journal of Chemical Biology
https://www.readbyqxmd.com/read/29693372/biosynthesis-of-the-15-membered-ring-depsipeptide-neoantimycin
#6
Will Skyrud, Joyce Liu, Divya Thankachan, Maria Cabrera, Ryan F Seipke, Wenjun Zhang
Antimycins are a family of natural products possessing outstanding biological activities and unique structures, which have intrigued chemists for over a half century. Of particular interest are the ring-expanded antimycins that show promising anticancer potential and whose biosynthesis remains uncharacterized. Specifically, neoantimycin and its analogs have been shown to be effective regulators of the oncogenic proteins GRP78/BiP and K-Ras. The neoantimycin structural skeleton is built on a 15-membered tetralactone ring containing one methyl, one hydroxy, one benzyl, and three alkyl moieties, as well as an amide linkage to a conserved 3-formamidosalicylic acid moiety...
May 18, 2018: ACS Chemical Biology
https://www.readbyqxmd.com/read/29371699/identification-of-a-biosynthetic-gene-cluster-for-the-polyene-macrolactam-sceliphrolactam-in-a-streptomyces-strain-isolated-from-mangrove-sediment
#7
Zhen Jie Low, Li Mei Pang, Yichen Ding, Qing Wei Cheang, Kim Le Mai Hoang, Hoa Thi Tran, Jinming Li, Xue-Wei Liu, Yoganathan Kanagasundaram, Liang Yang, Zhao-Xun Liang
Streptomyces are a genus of Actinobacteria capable of producing structurally diverse natural products. Here we report the isolation and characterization of a biosynthetically talented Streptomyces (Streptomyces sp. SD85) from tropical mangrove sediments. Whole-genome sequencing revealed that Streptomyces sp. SD85 harbors at least 52 biosynthetic gene clusters (BGCs), which constitute 21.2% of the 8.6-Mb genome. When cultivated under lab conditions, Streptomyces sp. SD85 produces sceliphrolactam, a 26-membered polyene macrolactam with unknown biosynthetic origin...
January 25, 2018: Scientific Reports
https://www.readbyqxmd.com/read/29170959/crispr-cas9-toolkit-for-actinomycete-genome-editing
#8
Yaojun Tong, Helene Lunde Robertsen, Kai Blin, Tilmann Weber, Sang Yup Lee
Bacteria of the order Actinomycetales are one of the most important sources of bioactive natural products, which are the source of many drugs. However, many of them still lack efficient genome editing methods, some strains even cannot be manipulated at all. This restricts systematic metabolic engineering approaches for boosting known and discovering novel natural products. In order to facilitate the genome editing for actinomycetes, we developed a CRISPR-Cas9 toolkit with high efficiency for actinomyces genome editing...
2018: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28742008/development-of-a-crispr-cas9-mediated-gene-editing-tool-in-streptomyces-rimosus
#9
Haiyan Jia, Longmei Zhang, Tongtong Wang, Jin Han, Hui Tang, Liping Zhang
Clustered regularly interspaced short palindromic repeats, associated proteins (CRISPR/Cas), has been developed into a powerful, targeted genome-editing tool in a wide variety of species. Here, we report an extensive investigation of the type II CRISPR/Cas9 system for targeted gene editing in Streptomyces rimosus. S. rimosus is used in the production of the antibiotic oxytetracycline, and its genome differs greatly from other species of the genus Streptomyces in the conserved chromosome terminal and core regions, which is of major production and scientific research value...
August 2017: Microbiology
https://www.readbyqxmd.com/read/28507698/formicamycins-antibacterial-polyketides-produced-by-streptomyces-formicae-isolated-from-african-tetraponera-plant-ants
#10
Zhiwei Qin, John T Munnoch, Rebecca Devine, Neil A Holmes, Ryan F Seipke, Karl A Wilkinson, Barrie Wilkinson, Matthew I Hutchings
We report a new Streptomyces species named S. formicae that was isolated from the African fungus-growing plant-ant Tetraponera penzigi and show that it produces novel pentacyclic polyketides that are active against MRSA and VRE. The chemical scaffold of these compounds, which we have called the formicamycins, is similar to the fasamycins identified from the heterologous expression of clones isolated from environmental DNA, but has significant differences that allow the scaffold to be decorated with up to four halogen atoms...
April 1, 2017: Chemical Science
https://www.readbyqxmd.com/read/28398287/crispr-cas9-strategy-for-activation-of-silent-streptomyces-biosynthetic-gene-clusters
#11
Mingzi M Zhang, Fong Tian Wong, Yajie Wang, Shangwen Luo, Yee Hwee Lim, Elena Heng, Wan Lin Yeo, Ryan E Cobb, Behnam Enghiad, Ee Lui Ang, Huimin Zhao
Here we report an efficient CRISPR-Cas9 knock-in strategy to activate silent biosynthetic gene clusters (BGCs) in streptomycetes. We applied this one-step strategy to activate multiple BGCs of different classes in five Streptomyces species and triggered the production of unique metabolites, including a novel pentangular type II polyketide in Streptomyces viridochromogenes. This potentially scalable strategy complements existing activation approaches and facilitates discovery efforts to uncover new compounds with interesting bioactivities...
April 10, 2017: Nature Chemical Biology
https://www.readbyqxmd.com/read/27417933/high-efficiency-genome-editing-of-streptomyces-species-by-an-engineered-crispr-cas-system
#12
Y Wang, R E Cobb, H Zhao
Next-generation sequencing technologies have rapidly expanded the genomic information of numerous organisms and revealed a rich reservoir of natural product gene clusters from microbial genomes, especially from Streptomyces, the largest genus of known actinobacteria at present. However, genetic engineering of these bacteria is often time consuming and labor intensive, if even possible. In this chapter, we describe the design and construction of pCRISPomyces, an engineered Type II CRISPR/Cas system, for targeted multiplex gene deletions in Streptomyces lividans, Streptomyces albus, and Streptomyces viridochromogenes with editing efficiency ranging from 70% to 100%...
2016: Methods in Enzymology
https://www.readbyqxmd.com/read/26901661/an-active-type-i-e-crispr-cas-system-identified-in-streptomyces-avermitilis
#13
Yi Qiu, Shiwei Wang, Zhi Chen, Yajie Guo, Yuan Song
CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA...
2016: PloS One
https://www.readbyqxmd.com/read/26556277/in-vitro-crispr-cas9-system-for-efficient-targeted-dna-editing
#14
Yunkun Liu, Weixin Tao, Shishi Wen, Zhengyuan Li, Anna Yang, Zixin Deng, Yuhui Sun
UNLABELLED: The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, an RNA-guided nuclease for specific genome editing in vivo, has been adopted in a wide variety of organisms. In contrast, the in vitro application of the CRISPR/Cas9 system has rarely been reported. We present here a highly efficient in vitro CRISPR/Cas9-mediated editing (ICE) system that allows specific refactoring of biosynthetic gene clusters in Streptomyces bacteria and other large DNA fragments...
2015: MBio
https://www.readbyqxmd.com/read/26318449/highly-efficient-editing-of-the-actinorhodin-polyketide-chain-length-factor-gene-in-streptomyces-coelicolor-m145-using-crispr-cas9-coda-sm-combined-system
#15
Hu Zeng, Shishi Wen, Wei Xu, Zhaoren He, Guifa Zhai, Yunkun Liu, Zixin Deng, Yuhui Sun
The current diminishing returns in finding useful antibiotics and the occurrence of drug-resistant bacteria call for the need to find new antibiotics. Moreover, the whole genome sequencing revealed that the biosynthetic potential of Streptomyces, which has produced the highest numbers of approved and clinical-trial drugs, has been greatly underestimated. Considering the known gene editing toolkits were arduous and inefficient, novel and efficient gene editing system are desirable. Here, we developed an engineered CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein) combined with the counterselection system CodA(sm), the D314A mutant of cytosine deaminase, to rapidly and effectively edit Streptomyces genomes...
December 2015: Applied Microbiology and Biotechnology
https://www.readbyqxmd.com/read/25806970/crispr-cas9-based-engineering-of-actinomycetal-genomes
#16
Yaojun Tong, Pep Charusanti, Lixin Zhang, Tilmann Weber, Sang Yup Lee
Bacteria of the order Actinomycetales are one of the most important sources of pharmacologically active and industrially relevant secondary metabolites. Unfortunately, many of them are still recalcitrant to genetic manipulation, which is a bottleneck for systematic metabolic engineering. To facilitate the genetic manipulation of actinomycetes, we developed a highly efficient CRISPR-Cas9 system to delete gene(s) or gene cluster(s), implement precise gene replacements, and reversibly control gene expression in actinomycetes...
September 18, 2015: ACS Synthetic Biology
https://www.readbyqxmd.com/read/25739462/one-step-high-efficiency-crispr-cas9-mediated-genome-editing-in-streptomyces
#17
He Huang, Guosong Zheng, Weihong Jiang, Haifeng Hu, Yinhua Lu
The RNA-guided DNA editing technology CRISPRs (clustered regularly interspaced short palindromic repeats)/Cas9 had been used to introduce double-stranded breaks into genomes and to direct subsequent site-specific insertions/deletions or the replacement of genetic material in bacteria, such as Escherichia coli, Streptococcus pneumonia, and Lactobacillus reuteri. In this study, we established a high-efficiency CRISPR/Cas9 genome editing plasmid pKCcas9dO for use in Streptomyces genetic manipulation, which comprises a target-specific guide RNA, a codon-optimized cas9, and two homology-directed repair templates...
April 2015: Acta Biochimica et Biophysica Sinica
https://www.readbyqxmd.com/read/25458909/high-efficiency-multiplex-genome-editing-of-streptomyces-species-using-an-engineered-crispr-cas-system
#18
Ryan E Cobb, Yajie Wang, Huimin Zhao
Actinobacteria, particularly those of genus Streptomyces, remain invaluable hosts for the discovery and engineering of natural products and their cognate biosynthetic pathways. However, genetic manipulation of these bacteria is often labor and time intensive. Here, we present an engineered CRISPR/Cas system for rapid multiplex genome editing of Streptomyces strains, demonstrating targeted chromosomal deletions in three different Streptomyces species and of various sizes (ranging from 20 bp to 30 kb) with efficiency ranging from 70 to 100%...
June 19, 2015: ACS Synthetic Biology
https://www.readbyqxmd.com/read/25452498/brex-is-a-novel-phage-resistance-system-widespread-in-microbial-genomes
#19
Tamara Goldfarb, Hila Sberro, Eyal Weinstock, Ofir Cohen, Shany Doron, Yoav Charpak-Amikam, Shaked Afik, Gal Ofir, Rotem Sorek
The perpetual arms race between bacteria and phage has resulted in the evolution of efficient resistance systems that protect bacteria from phage infection. Such systems, which include the CRISPR-Cas and restriction-modification systems, have proven to be invaluable in the biotechnology and dairy industries. Here, we report on a six-gene cassette in Bacillus cereus which, when integrated into the Bacillus subtilis genome, confers resistance to a broad range of phages, including both virulent and temperate ones...
January 13, 2015: EMBO Journal
https://www.readbyqxmd.com/read/24076762/orthogonal-cas9-proteins-for-rna-guided-gene-regulation-and-editing
#20
Kevin M Esvelt, Prashant Mali, Jonathan L Braff, Mark Moosburner, Stephanie J Yaung, George M Church
The Cas9 protein from the Streptococcus pyogenes CRISPR-Cas acquired immune system has been adapted for both RNA-guided genome editing and gene regulation in a variety of organisms, but it can mediate only a single activity at a time within any given cell. Here we characterize a set of fully orthogonal Cas9 proteins and demonstrate their ability to mediate simultaneous and independently targeted gene regulation and editing in bacteria and in human cells. We find that Cas9 orthologs display consistent patterns in their recognition of target sequences, and we identify an unexpectedly versatile Cas9 protein from Neisseria meningitidis...
November 2013: Nature Methods
keyword
keyword
159625
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"