keyword
MENU ▼
Read by QxMD icon Read
search

Three-dimensional printing of biological tissue

keyword
https://www.readbyqxmd.com/read/28598722/improvement-of-mechanical-strength-and-osteogenic-potential-of-calcium-sulfate-based-hydroxyapatite-3-dimensional-printed-scaffolds-by-%C3%AE%C2%B5-polycarbonate-coating
#1
Beom-Su Kim, Sun-Sik Yang, Ho Park, Se-Hwan Lee, Young-Sam Cho, Jun Lee
Powder-based three-dimensional (3D) printing is an excellent method to fabricate complex-shaped scaffolds for tissue engineering. However, their lower mechanical strength restricts their application in bone tissue engineering. Here, we created a 3D-printed scaffold coated with a ε-polycaprolactone (PCL) polymer solution (5 and 10 w/v %) to improve the mechanical strength of the scaffold. The 3D scaffold was fabricated from calcium sulfate hemihydrate powder (CaSO4-1/2 H2O), transformed into hydroxyapatite (HAp) by treatment with a hydrothermal reaction in an NH4H2PO4 solution...
June 21, 2017: Journal of Biomaterials Science. Polymer Edition
https://www.readbyqxmd.com/read/28586316/direct-3d-cell-printing-of-human-skin-with-functional-transwell-system
#2
Byoung Soo Kim, Jung-Seob Lee, Ge Gao, Dong-Woo Cho
Three-dimensional (3D) cell-printing has been emerging as a promising technology with which to build up human skin models by enabling rapid and versatile design. Despite the technological advances, challenges remain in the development of fully functional models that recapitulate complexities in the native tissue. Moreover, although several approaches have been explored for the development of biomimetic human skin models, the present skin models based on multistep fabrication methods using polydimethylsiloxane chips and commercial transwell inserts could be tackled by leveraging 3D cell-printing technology...
June 6, 2017: Biofabrication
https://www.readbyqxmd.com/read/28575964/scaffolds-for-bone-tissue-engineering-state-of-the-art-and-new-perspectives
#3
REVIEW
Livia Roseti, Valentina Parisi, Mauro Petretta, Carola Cavallo, Giovanna Desando, Isabella Bartolotti, Brunella Grigolo
This review is intended to give a state of the art description of scaffold-based strategies utilized in Bone Tissue Engineering. Numerous scaffolds have been tested in the orthopedic field with the aim of improving cell viability, attachment, proliferation and homing, osteogenic differentiation, vascularization, host integration and load bearing. The main traits that characterize a scaffold suitable for bone regeneration concerning its biological requirements, structural features, composition, and types of fabrication are described in detail...
September 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28562185/hypoxia-biomimicry-to-enhance-monetite-bone-defect-repair
#4
Justin Drager, Jose Luis Ramirez-GarciaLuna, Abhishek Kumar, Uwe Gbureck, Edward J Harvey, Jake Barralet
Tissue hypoxia is a critical driving force for angiogenic and osteogenic responses in bone regeneration and is, at least partly, under the control of the Hypoxia Inducible Factor-1α (HIF-1α) pathway. Recently, the widely used iron chelator Deferoxamine (DFO) has been found to elevate HIF-1α levels independent of oxygen concentrations, thereby, creating an otherwise normal environment that mimics the hypoxic state. This has the potential to augment the biological properties of inorganic scaffolds without the need of recombinant growth factors...
May 31, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28467835/self-supporting-nanoclay-as-internal-scaffold-material-for-direct-printing-of-soft-hydrogel-composite-structures-in-air
#5
Yifei Jin, Chengcheng Liu, Wenxuan Chai, Ashley Compaan, Yong Huang
Three dimensional (3D) bioprinting technology enables the freeform fabrication of complex constructs from various hydrogels and is receiving increasing attention in tissue engineering. The objective of this study is to develop a novel self-supporting direct hydrogel printing approach to extrude complex 3D hydrogel composite structures in air without the help of a support bath. Laponite, a member of the smectite mineral family, is investigated to serve as an internal scaffold material for the direct printing of hydrogel composite structures in air...
May 11, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28375818/chondrocyte-attachment-proliferation-and-differentiation-on-three-dimensional-polycaprolactone-fumarate-scaffolds
#6
Eric R Wagner, Joshua Parry, Mahrokh Dadsetan, Dalibel Bravo, Scott M Riester, Andre J van Wijnen, Michael J Yaszemski, Sanjeev Kakar
Current treatment options for cartilage injuries are limited. The goals of this study are to create a biodegradable polymer scaffold with the capabilities of sustaining chondrocyte growth and proliferation, enable cell-to-cell communication and tissue regeneration through large pores, and assess the biological augmentation of the scaffold capabilities using platelet lysate (PL). We synthesized biodegradable polycaprolactone fumarate (PCLF) scaffolds to allow cell-cell communication through large interconnected pores...
March 31, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28299927/supramolecular-hydrogels-based-on-dna-self-assembly
#7
Yu Shao, Haoyang Jia, Tianyang Cao, Dongsheng Liu
Extracellular matrix (ECM) provides essential supports three dimensionally to the cells in living organs, including mechanical support and signal, nutrition, oxygen, and waste transportation. Thus, using hydrogels to mimic its function has attracted much attention in recent years, especially in tissue engineering, cell biology, and drug screening. However, a hydrogel system that can merit all parameters of the natural ECM is still a challenge. In the past decade, deoxyribonucleic acid (DNA) has arisen as an outstanding building material for the hydrogels, as it has unique properties compared to most synthetic or natural polymers, such as sequence designability, precise recognition, structural rigidity, and minimal toxicity...
March 16, 2017: Accounts of Chemical Research
https://www.readbyqxmd.com/read/28289247/three-dimensional-bioprinting-strategies-for-tissue-engineering
#8
Yu Shrike Zhang, Rahmi Oklu, Mehmet Remzi Dokmeci, Ali Khademhosseini
Over the past decades, many approaches have been developed to fabricate biomimetic extracellular matrices of desired properties for engineering functional tissues. However, the inability of these techniques to precisely control the spatial architecture has posed a significant challenge in producing complex tissues. 3D bioprinting technology has emerged as a potential solution by bringing unprecedented freedom and versatility in depositing biological materials and cells in a well-controlled manner in the 3D volumes, therefore achieving precision engineering of functional tissues...
March 13, 2017: Cold Spring Harbor Perspectives in Medicine
https://www.readbyqxmd.com/read/28157291/continuous-fabrication-and-assembly-of-spatial-cell-laden-fibers-for-a-tissue-like-construct-via-a-photolithographic-based-microfluidic-chip
#9
Dan Wei, Jing Sun, Jason Bolderson, Meiling Zhong, Matthew John Dalby, Maggie Cusack, Huabing Yin, Hongsong Fan, Xingdong Zhang
Engineering three-dimensional (3D) scaffolds with in vivo like architecture and function has shown great potential for tissue regeneration. Here we developed a facile microfluidic-based strategy for the continuous fabrication of cell-laden microfibers with hierarchically organized architecture. We show that photolithographically fabricated microfluidic devices offer a simple and reliable way to create anatomically inspired complex structures. Furthermore, the use of photo-cross-linkable methacrylated alginate allows modulation of both the mechanical properties and biological activity of the hydrogels for targeted applications...
February 15, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28071596/3d-bioprinting-of-gelma-scaffolds-triggers-mineral-deposition-by-primary-human-osteoblasts
#10
Christine McBeth, Jasmin Lauer, Michael Ottersbach, Jennifer Campbell, Andre Sharon, Alexis F Sauer-Budge
Due to its relatively low level of antigenicity and high durability, titanium has successfully been used as the major material for biological implants. However, because the typical interface between titanium and tissue precludes adequate transmission of load into the surrounding bone, over time, load-bearing implants tend to loosen and revision surgeries are required. Osseointegration of titanium implants requires presentation of both biological and mechanical cues that promote attachment of and trigger mineral deposition by osteoblasts...
January 10, 2017: Biofabrication
https://www.readbyqxmd.com/read/28067628/3d-bioprinting-improving-in-vitro-models-of-metastasis-with-heterogeneous-tumor-microenvironments
#11
REVIEW
Jacob L Albritton, Jordan S Miller
Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology...
January 1, 2017: Disease Models & Mechanisms
https://www.readbyqxmd.com/read/28008427/social-and-legal-frame-conditions-for-3d-and-bioprinting-in-medicine
#12
Heide-Katharina Bauer, Martin Heller, Matthias Fink, Daniela Maresch, Johannes Gartner, Ulrich M Gassner, Bilal Al-Nawas
The beginnings of three-dimensional (3D) printing and bioprinting can be traced to as early as 1984. From printing inorganic models for the generation of biologic scaffolds, additive manufacturing (AM) developed to the direct printing of organic materials, including specialized tissues, proteins, and cells. In recent years, these technologies have gained significantly in relevance, and there have been several innovations, especially in the field of regenerative medicine. It is becoming increasingly important to consider the economic and social aspects of AM, particularly in education and information of medical human resources, society, and politics, as well as for the establishment of homogenous, globally adapted legal regulations...
2016: International Journal of Computerized Dentistry
https://www.readbyqxmd.com/read/27973346/3d-bioprinting-of-gelma-scaffolds-triggers-mineral-deposition-by-primary-human-osteoblasts
#13
Christine McBeth, Jasmin Lauer, Michael Ottersbach, Jennifer Campbell, Andre Sharon, Alexis Sauer-Budge
Due to its relatively low level of antigenicity and high durability, titanium has successfully been used as the major material for biological implants. However, because the typical interface between titanium and tissue precludes adequate transmission of load into the surrounding bone, over time, load-bearing implants tend to loosen and revision surgeries are required. Osseointegration of titanium implants requires presentation of both biological and mechanical cues that promote attachment of and trigger mineral deposition by osteoblasts...
December 14, 2016: Biofabrication
https://www.readbyqxmd.com/read/27942578/three-dimensional-printing-of-bone-extracellular-matrix-for-craniofacial-regeneration
#14
Ben P Hung, Bilal A Naved, Ethan L Nyberg, Miguel Dias, Christina A Holmes, Jennifer H Elisseeff, Amir H Dorafshar, Warren L Grayson
Tissue-engineered approaches to regenerate bone in the craniomaxillofacial region utilize biomaterial scaffolds to provide structural and biological cues to stem cells to stimulate osteogenic differentiation. Bioactive scaffolds are typically comprised of natural components but often lack the manufacturability of synthetic materials. To circumvent this trade-off, we 3D printed materials comprised of decellularized bone (DCB) matrix particles combined with polycaprolactone (PCL) to create novel hybrid DCB:PCL scaffolds for bone regeneration...
October 10, 2016: ACS Biomaterials Science & Engineering
https://www.readbyqxmd.com/read/27917822/additive-manufactured-polycaprolactone-scaffold-consisting-of-innovatively-designed-microsized-spiral-struts-for-hard-tissue-regeneration
#15
Gi Hoon Yang, Minseong Kim, GeunHyung Kim
Three-dimensional biomedical polycaprolactone scaffolds consisting of microsized spiral-like struts were fabricated using an additive manufacturing process. In this study, various processing parameters such as applied pressure, polymer viscosity, printing nozzle-to-stage distance, and nozzle moving speed were optimized to achieve a unique scaffold consisting of spiral-like struts. Various physical and biological analyses, including the morphological structure of spirals, mechanical properties, cell proliferation, and osteogenic activities, were performed to evaluate the effect of the spirals of the scaffold...
December 5, 2016: Biofabrication
https://www.readbyqxmd.com/read/27886664/degradation-behaviors-of-geometric-cues-and-mechanical-properties-in-a-3d-scaffold-for-tendon-repair
#16
Yang Wu, Yoke San Wong, Jerry Ying Hsi Fuh
A three-dimensional (3D) scaffold fabricated via electrohydrodynamic jet printing (E-jetting) and thermally uniaxial stretching, has been developed for tendon tissue regeneration in our previous study. In this study, more in-depth biological test showed that the aligned cell morphology guided by the anisotropic geometries of the 3D tendon scaffolds, leading to up-regulated tendious gene expression including collagen type I, decorin, tenascin-C, and biglycan, as compared to the electrospun scaffolds. Given the importance of geometric cues to the biological function of the scaffolds, the degradation behaviors of the 3D scaffolds were investigated...
April 2017: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/27689939/three-dimensional-direct-cell-bioprinting-for-tissue-engineering
#17
Saime Burce Ozler, Ezgi Bakirci, Can Kucukgul, Bahattin Koc
Bioprinting is a relatively new technology where living cells with or without biomaterials are printed layer-by-layer in order to create three-dimensional (3D) living structures. In this article, novel bioprinting methodologies are developed to fabricate 3D biological structures directly from computer models using live multicellular aggregates. Multicellular aggregates made out of at least two cell types from fibroblast, endothelial and smooth muscle cells are prepared and optimized. A novel bioprinting approach is proposed in order to continuously extrude cylindrical multicellular aggregates through the bioprinter's glass microcapillaries...
September 30, 2016: Journal of Biomedical Materials Research. Part B, Applied Biomaterials
https://www.readbyqxmd.com/read/27683552/hyperelastic-bone-a-highly-versatile-growth-factor-free-osteoregenerative-scalable-and-surgically-friendly-biomaterial
#18
Adam E Jakus, Alexandra L Rutz, Sumanas W Jordan, Abhishek Kannan, Sean M Mitchell, Chawon Yun, Katie D Koube, Sung C Yoo, Herbert E Whiteley, Claus-Peter Richter, Robert D Galiano, Wellington K Hsu, Stuart R Stock, Erin L Hsu, Ramille N Shah
Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic "bone" (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm(3)/hour) from room temperature extruded liquid inks...
September 28, 2016: Science Translational Medicine
https://www.readbyqxmd.com/read/27631341/patterning-cellular-compartments-within-tracer-cultures-using-sacrificial-gelatin-printing
#19
Bin Xu, Darren Rodenhizer, Shakir Lakhani, Xiaoshu Zhang, John P Soleas, Laurie Ailles, Alison P McGuigan
In the past decade, it has been well recognised that the tumour microenvironment contains microenvironmental components such as hypoxia that significantly influence tumour cell behaviours such, invasiveness and therapy resistance, all of which provide new targets for studying cancer biology and developing anticancer therapeutics. In response, a large number of two-dimensional and three-dimensional (3D) in vitro tumour models have been developed to recapitulate different aspects of the tumour microenvironment and enable the study of related biological questions...
2016: Biofabrication
https://www.readbyqxmd.com/read/27630079/multifunctional-3d-printing-of-heterogeneous-hydrogel-structures
#20
Ali Nadernezhad, Navid Khani, Gözde Akdeniz Skvortsov, Burak Toprakhisar, Ezgi Bakirci, Yusuf Menceloglu, Serkan Unal, Bahattin Koc
Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation...
2016: Scientific Reports
keyword
keyword
15595
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"