Read by QxMD icon Read

Three-dimensional printing of biological tissue

Gi Hoon Yang, Minseong Kim, GeunHyung Kim
Three-dimensional biomedical polycaprolactone scaffolds consisting of microsized spiral-like struts were fabricated using an additive manufacturing process. In this study, various processing parameters such as applied pressure, polymer viscosity, printing nozzle-to-stage distance, and nozzle moving speed were optimized to achieve a unique scaffold consisting of spiral-like struts. Various physical and biological analyses, including the morphological structure of spirals, mechanical properties, cell proliferation, and osteogenic activities, were performed to evaluate the effect of the spirals of the scaffold...
December 5, 2016: Biofabrication
Yang Wu, Yoke San Wong, Jerry Ying Hsi Fuh
A three-dimensional (3D) scaffold fabricated via electrohydrodynamic jet printing (E-jetting) and thermally uniaxial stretching, has been developed for tendon tissue regeneration in our previous study. In this study, more in-depth biological test showed that the aligned cell morphology guided by the anisotropic geometries of the 3D tendon scaffolds, leading to up-regulated tendious gene expression including collagen type I, decorin, tenascin-C and biglycan, as compared to the electrospun scaffolds. Given the importance of geometric cues to the biological function of the scaffolds, the degradation behaviors of the 3D scaffolds were investigated...
November 25, 2016: Journal of Biomedical Materials Research. Part A
Saime Burce Ozler, Ezgi Bakirci, Can Kucukgul, Bahattin Koc
Bioprinting is a relatively new technology where living cells with or without biomaterials are printed layer-by-layer in order to create three-dimensional (3D) living structures. In this article, novel bioprinting methodologies are developed to fabricate 3D biological structures directly from computer models using live multicellular aggregates. Multicellular aggregates made out of at least two cell types from fibroblast, endothelial and smooth muscle cells are prepared and optimized. A novel bioprinting approach is proposed in order to continuously extrude cylindrical multicellular aggregates through the bioprinter's glass microcapillaries...
September 30, 2016: Journal of Biomedical Materials Research. Part B, Applied Biomaterials
Adam E Jakus, Alexandra L Rutz, Sumanas W Jordan, Abhishek Kannan, Sean M Mitchell, Chawon Yun, Katie D Koube, Sung C Yoo, Herbert E Whiteley, Claus-Peter Richter, Robert D Galiano, Wellington K Hsu, Stuart R Stock, Erin L Hsu, Ramille N Shah
Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic "bone" (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm(3)/hour) from room temperature extruded liquid inks...
September 28, 2016: Science Translational Medicine
Bin Xu, Darren Rodenhizer, Shakir Lakhani, Xiaoshu Zhang, John P Soleas, Laurie Ailles, Alison P McGuigan
In the past decade, it has been well recognised that the tumour microenvironment contains microenvironmental components such as hypoxia that significantly influence tumour cell behaviours such, invasiveness and therapy resistance, all of which provide new targets for studying cancer biology and developing anticancer therapeutics. In response, a large number of two-dimensional and three-dimensional (3D) in vitro tumour models have been developed to recapitulate different aspects of the tumour microenvironment and enable the study of related biological questions...
2016: Biofabrication
Ali Nadernezhad, Navid Khani, Gözde Akdeniz Skvortsov, Burak Toprakhisar, Ezgi Bakirci, Yusuf Menceloglu, Serkan Unal, Bahattin Koc
Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation...
2016: Scientific Reports
Rachel Kaye, Todd Goldstein, David Zeltsman, Daniel A Grande, Lee P Smith
Three dimensional (3D) printing is a novel technique that has evolved over the past 35 years and has the potential to revolutionize the field of medicine with its inherent advantages of customizability and the ability to create complex shapes with precision. It has been used extensively within the fields of orthopedics, dentistry, and craniofacial reconstruction with wide ranging utility including, medical modeling, surgical planning and the production of custom plates, screws and surgical guides. Furthermore, it has been used for similar means in the field of Otorhinolaryngology and also has potential to revolutionize the treatment of airway malacia...
October 2016: International Journal of Pediatric Otorhinolaryngology
Yong Lin Kong, Maneesh K Gupta, Blake N Johnson, Michael C McAlpine
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive...
June 2016: Nano Today
Byoung Soo Kim, Jinah Jang, Suhun Chae, Ge Gao, Jeong-Sik Kong, Minjun Ahn, Dong-Woo Cho
Three-dimensional (3D) cell-printed constructs have been recognized as promising biological substitutes for tissue/organ regeneration. They provide tailored physical properties and biological cues via multi-material printing process. In particular, hybrid bioprinting, enabling to use biodegradable synthetic polymers as framework, has been an attractive method to support weak hydrogels. The constructs with controlled architecture and high shape fidelity were fabricated through this method, depositing spatial arrangement of multi-cell types into microscale constructs...
2016: Biofabrication
Jiankang He, Peng Xia, Dichen Li
The replication of native hierarchical structures into synthetic scaffolds is important to direct cell growth and tissue regeneration. However, most of the existing scaffold strategies lack the capability to simultaneously realize the controlled fabrication of macroscopic geometries as well as microscale architectures with the scale similar to living cells. Here we developed a melt electrohydrodynamic printing platform and verified its feasibility to fabricate three-dimensional (3D) tissue-engineered scaffolds with complex curved geometries and microscale fibrous structures...
2016: Biofabrication
Yang Wu, Gopu Sriram, Amr S Fawzy, Jerry Yh Fuh, Vinicius Rosa, Tong Cao, Yoke San Wong
Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application...
August 2016: Journal of Biomaterials Applications
Eva Schmelzer, Patrick Over, Bruno Gridelli, Jörg C Gerlach
Advancement in thermal three-dimensional printing techniques has greatly increased the possible applications of various materials in medical applications and tissue engineering. Yet, potential toxic effects on primary human cells have been rarely investigated. Therefore, we compared four materials commonly used in thermal printing for bioengineering, namely thermally printed acrylonitrile butadiene styrene, MED610, polycarbonate, and polylactic acid, and investigated their effects on primary human adult skin epidermal keratinocytes and bone marrow mesenchymal stromal cells (BM-MSCs) in vitro...
2016: Journal of Medical and Biological Engineering
K C Nune, R D K Misra, S J Li, Y L Hao, W Zhang
The objective of the study is to fundamentally elucidate the biological response of 3D printed mesh structures subjected to plasma electrolytic oxidation process through the study of osteoblast functions. The cellular activity of plasma electrolytic-oxidized mesh structure was explored in terms of cell-to-cell communication involving proliferation, synthesis of extracellular and intracellular proteins, and mineralization. Upon plasma electrolytic oxidation of the mesh structure, a thin layer of bioactive titania with pore size 1-3 µm was nucleated on the surface...
October 2016: Journal of Biomedical Materials Research. Part A
Marius Köpf, Daniela F Duarte Campos, Andreas Blaeser, Kshama S Sen, Horst Fischer
In recent years, novel biofabrication technologies have enabled the rapid manufacture of hydrogel-cell suspensions into tissue-imitating constructs. The development of novel materials for biofabrication still remains a challenge due to a gap between contradicting requirements such as three-dimensional printability and optimal cytocompatibility. We hypothesise that blending of different hydrogels could lead to a novel material with favourable biological and printing properties. In our work, we combined agarose and type I collagen in order to develop a hydrogel blend capable of long-term cell encapsulation of human umbilical artery smooth muscle cells (HUASMCs) and 3D drop-on-demand printing...
June 2016: Biofabrication
Hongming Yang
Till now, though great progress has been made in the treatment of refractory wound, severe challenges are still awaiting to be solved. The strategy of treatment is generally either non-surgical treatment or surgical treatment. Non-surgical treatment includes physical therapy, negative pressure wound therapy, growth factor therapy, stem cell transplantation, gene therapy, application of new biological dressing, application of skin tissue engineering, three-dimensional bio-printing technology, biological therapy, and Chinese herbal medicine therapy...
April 2016: Zhonghua Shao Shang za Zhi, Zhonghua Shaoshang Zazhi, Chinese Journal of Burns
Zhengjie Wu, Xin Su, Yuanyuan Xu, Bin Kong, Wei Sun, Shengli Mi
Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs...
2016: Scientific Reports
Vivian K Lee, Guohao Dai
Three-dimensional (3-D) cell printing, which can accurately deposit cells, biomaterial scaffolds and growth factors in precisely defined spatial patterns to form biomimetic tissue structures, has emerged as a powerful enabling technology to create live tissue and organ structures for drug discovery and tissue engineering applications. Unlike traditional 3-D printing that uses metals, plastics and polymers as the printing materials, cell printing has to be compatible with living cells and biological matrix. It is also required that the printing process preserves the biological functions of the cells and extracellular matrix, and to mimic the cell-matrix architectures and mechanical properties of the native tissues...
April 11, 2016: Annals of Biomedical Engineering
Barbara Lorber, Wen-Kai Hsiao, Keith R Martin
PURPOSE OF REVIEW: Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. RECENT FINDINGS: It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer...
May 2016: Current Opinion in Ophthalmology
Samer Toume, Amit Gefen, Daphne Weihs
Deformations that are applied on body tissues during daily activities, as a result of morbid conditions, or during various medical treatments, affect cell viability and biological function. Such mechanobiological phenomena are often studied in vitro, in monolayer cultures. To facilitate such studies cost effectively, we have developed a novel, printable cell stretching apparatus. The apparatus is used to apply tensile strains on cells cultured on elastic, stretchable substrata, either by sustained or by dynamic-cyclic application...
May 24, 2016: Journal of Biomechanics
MyungGu Yeo, Ji-Seon Lee, Wook Chun, Geun Hyung Kim
Three-dimensional (3D) cell printing processes have been used widely in various tissue engineering applications due to the efficient embedding of living cells in appropriately designed micro- or macro-structures. However, there are several issues to overcome, such as the limited choice of bioinks and tailor-made fabricating strategies. Here, we suggest a new, innovative cell-printing process, supplemented with a core-sheath nozzle and an aerosol cross-linking method, to obtain multilayered cell-laden mesh structure and a newly considered collagen-based cell-laden bioink...
April 11, 2016: Biomacromolecules
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"