Read by QxMD icon Read

"peak detection"

Guillaume Van der Rest, Human Rezaei, Frédéric Halgand
Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry...
October 18, 2016: Journal of the American Society for Mass Spectrometry
Santiago Marfà, Josep Marti, Adalgiza Reyes, Gregori Casals, Guillermo Fernández-Varo, Silvia Carvajal, J C García-Valdecasas, Josep Fuster, Wladimiro Jiménez
Colorectal cancer (CRC) is one of the most common cancers in the developed countries, and nearly 70% of patients with CRC develop colorectal liver metastases (CRLMs). During the last decades, several scores have been proposed to predict recurrence after CRLM resection. However, these risk scoring systems do not accurately reflect the prognosis of these patients. Therefore, this investigation was designed to identify a proteomic profile in human hepatic tumor samples to classify patients with CRLM as "mild" or "severe" based on the 5-year survival...
October 2016: Translational Oncology
Anna Agakova, Frano Vučković, Lucija Klarić, Gordan Lauc, Felix Agakov
Ultra-performance liquid chromatography (UPLC) is the established technology for accurate analysis of IgG Fc N-glycosylation due to its superior sensitivity, resolution, speed, and its capability to provide branch-specific information of glycan species. Correct and cost-efficient preprocessing of chromatographic data is the major prerequisite for subsequent analyses ranging from inference of structural isomers to biomarker discovery and prediction of humoral immune response from characterized changes in glycosylation...
2017: Methods in Molecular Biology
Quan Ding, Yong Bai, Yusuf Bugra Erol, Rebeca Salas-Boni, Xiaorong Zhang, Xiao Hu
QRS peak detection is a challenging problem when ECG signal is corrupted. However, additional physiological signals may also provide information about the QRS position. In this study, we focus on a unique benchmark provided by PhysioNet/Computing in Cardiology Challenge 2014 and Physiological Measurement focus issue: robust detection of heart beats in multimodal data, which aimed to explore robust methods for QRS detection in multimodal physiological signals. A dataset of 200 training and 210 testing records are used, where the testing records are hidden for evaluating the performance only...
October 13, 2016: Physiological Measurement
Meng Hu, Martin Krauss, Werner Brack, Tobias Schulze
Liquid chromatography-high resolution mass spectrometry (LC-HRMS) is a well-established technique for nontarget screening of contaminants in complex environmental samples. Automatic peak detection is essential, but its performance has only rarely been assessed and optimized so far. With the aim to fill this gap, we used pristine water extracts spiked with 78 contaminants as a test case to evaluate and optimize chromatogram and spectral data processing. To assess whether data acquisition strategies have a significant impact on peak detection, three values of MS cycle time (CT) of an LTQ Orbitrap instrument were tested...
November 2016: Analytical and Bioanalytical Chemistry
Sandeep Raj, Kailash Chandra Ray, Om Shankar
BACKGROUND AND OBJECTIVE: The increase in the number of deaths due to cardiovascular diseases (CVDs) has gained significant attention from the study of electrocardiogram (ECG) signals. These ECG signals are studied by the experienced cardiologist for accurate and proper diagnosis, but it becomes difficult and time-consuming for long-term recordings. Various signal processing techniques are studied to analyze the ECG signal, but they bear limitations due to the non-stationary behavior of ECG signals...
November 2016: Computer Methods and Programs in Biomedicine
Tze-Feng Tian, San-Yuan Wang, Tien-Chueh Kuo, Cheng-En Tan, Guan-Yuan Chen, Ching-Hua Kuo, Chi-Hsin Sally Chen, Chang-Chuan Chan, Olivia A Lin, Y Jane Tseng
Two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) is superior for chromatographic separation and provides great sensitivity for complex biological fluid analysis in metabolomics. However, GC×GC/TOF-MS data processing is currently limited to vendor software and typically requires several preprocessing steps. In this work, we implement a web-based platform, which we call GC(2)MS, to facilitate the application of recent advances in GC×GC/TOF-MS, especially for metabolomics studies...
October 13, 2016: Analytical Chemistry
Seongho Kim, Hyejeong Jang, Imhoi Koo, Joohyoung Lee, Xiang Zhang
Compared to other analytical platforms, comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS) has much increased separation power for analysis of complex samples and thus is increasingly used in metabolomics for biomarker discovery. However, accurate peak detection remains a bottleneck for wide applications of GC×GC-MS. Therefore, the normal-exponential-Bernoulli (NEB) model is generalized by gamma distribution and a new peak detection algorithm using the normal-gamma-Bernoulli (NGB) model is developed...
January 2017: Computational Statistics & Data Analysis
Yi Jun Teh, Asral Bahari Jambek, Uda Hashim
The aim of this paper is to discuss the latest nano-biosensor technologies and existing signal analyser algorithm methods so that an automatic and portable nano-biosensor analyser can be realised. In this paper, the latest nano-biosensors are reviewed, and particular attention is given to sensors that provide amplitude changes at their output. To provide an automatic signal analysis of these changes, existing signal processing algorithms for peak detection are also discussed in detail.
September 9, 2016: Journal of Medical Engineering & Technology
Zhong Sheng, Yun Wang, Weiqian Zhao, Lirong Qiu, Yingbin Sun
Based on the optical arrangement of a bipolar differential confocal microscopy (BDCM), laser differential fitting confocal microscopy (DFCM) is proposed in this paper using the feature of BDCM that a zero-crossing point (ZCP) of the axial response curve precisely corresponds to the focus of the system objective. A linear segment of the DFCM axial response around the ZCP is used to fit a straight line. Focus can be determined by solving the equations of the fitting lines, and then, the sample surface could be measured and reconstructed with a high resolution...
September 1, 2016: Applied Optics
Parthraj R Kshirsagar, Harsha Hegde, Sandeep R Pai
BACKGROUND AND AIM: This study was designed to understand the effect of storage in polypropylene microcentrifuge tubes and glass vials during ultra-flow liquid chromatographic (UFLC) analysis. MATERIALS AND METHODS: One ml of methanol was placed in polypropylene microcentrifuge tubes (PP material, Autoclavable) and glass vials (Borosilicate) separately for 1, 2, 4, 8, 10, 20, 40, and 80 days intervals stored at -4°C. RESULTS: Contaminant peak was detected in methanol stored in polypropylene microcentrifuge tubes using UFLC analysis...
May 2016: Pharmacognosy Magazine
Aodhán Hickey, Brook Galna, John C Mathers, Lynn Rochester, Alan Godfrey
BACKGROUND: Multi-resolution analyses involving wavelets are commonly applied to data derived from accelerometer-based wearable technologies (wearables) to identify and quantify postural transitions (PTs). Previous studies fail to provide rationale to inform their choice of wavelet and scale approximation when utilising discrete wavelet transforms. This study examines varying combinations of those parameters to identify best practice recommendations for detecting and quantifying sit-to-stand (SiSt) and stand-to-sit (StSi) PTs...
September 2016: Gait & Posture
Asrul Adam, Zuwairie Ibrahim, Norrima Mokhtar, Mohd Ibrahim Shapiai, Paul Cumming, Marizan Mubin
Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application...
2016: SpringerPlus
Yan Ni, Mingming Su, Yunping Qiu, Wei Jia, Xiuxia Du
ADAP-GC is an automated computational pipeline for untargeted, GC/MS-based metabolomics studies. It takes raw mass spectrometry data as input and carries out a sequence of data processing steps including construction of extracted ion chromatograms, detection of chromatographic peak features, deconvolution of coeluting compounds, and alignment of compounds across samples. Despite the increased accuracy from the original version to version 2.0 in terms of extracting metabolite information for identification and quantitation, ADAP-GC 2...
September 6, 2016: Analytical Chemistry
Fumihiro Kaneda, Karina Garay-Palmett, Alfred B U'Ren, Paul G Kwiat
We report on the generation of an indistinguishable heralded single-photon state, using highly nondegenerate spontaneous parametric downconversion (SPDC). Spectrally factorable photon pairs can be generated by incorporating a broadband pump pulse and a group-velocity matching (GVM) condition in a periodically-poled potassium titanyl phosphate (PPKTP) crystal. The heralding photon is in the near IR, close to the peak detection efficiency of off-the-shelf Si single-photon detectors; meanwhile, the heralded photon is in the telecom L-band where fiber losses are at a minimum...
May 16, 2016: Optics Express
Ying Hu, Wenqin Mo, Kaifeng Dong, Fang Jin, Junlei Song
The maximum spectrum of the continuous wavelet transform (MSCWT) is proposed to demodulate the central wavelengths for the overlapped spectrum in a serial fiber Bragg grating (FBG) sensing system. We describe the operation principle of the MSCWT method. Moreover, the influence of the interval gap between two FBG wavelengths, 3 dB bandwidths, and optical powers of the reflected spectra are discussed. The simulation and experimental results indicate that the MSCWT can resolve an overlapped spectrum and decode the central wavelength with high accuracy...
June 10, 2016: Applied Optics
Ahmed Alqaraawi, Ahmad Alwosheel, Amr Alasaad
Heart rate variability (HRV) has become a marker for various health and disease conditions. Photoplethysmography (PPG) sensors integrated in wearable devices such as smart watches and phones are widely used to measure heart activities. HRV requires accurate estimation of time interval between consecutive peaks in the PPG signal. However, PPG signal is very sensitive to motion artefact which may lead to poor HRV estimation if false peaks are detected. In this Letter, the authors propose a probabilistic approach based on Bayesian learning to better estimate HRV from PPG signal recorded by wearable devices and enhance the performance of the automatic multi scale-based peak detection (AMPD) algorithm used for peak detection...
June 2016: Healthcare Technology Letters
Udit Satija, Barathram Ramkumar, M Sabarimalai Manikandan
A long-term continuous cardiac health monitoring system highly demands more battery power for real-time transmission of electrocardiogram (ECG) signals and increases bandwidth, treatment costs and traffic load of the diagnostic server. In this Letter, the authors present an automated low-complexity robust cardiac event change detection (CECD) method that can continuously detect specific changes in PQRST morphological patterns and heart rhythms and then enable transmission/storing of the recorded ECG signals...
June 2016: Healthcare Technology Letters
Kwang Jin Lee, Boreom Lee
Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem...
2016: Sensors
Sanjeev Kumar Jain, Basabi Bhaumik
A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology...
March 2016: Healthcare Technology Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"