keyword
MENU ▼
Read by QxMD icon Read
search

Tissue engineered heart valves

keyword
https://www.readbyqxmd.com/read/28532900/combinatorial-screening-of-3d-biomaterial-properties-that-promote-myofibrogenesis-for-mesenchymal-stromal-cell-based-heart-valve-tissue-engineering
#1
Jenna Usprech, David A Romero, Cristina H Amon, Craig A Simmons
The physical and chemical properties of a biomaterial integrate with soluble cues in the cell microenvironment to direct cell fate and function. Predictable biomaterial-based control of integrated cell responses has been investigated with two-dimensional (2D) screening platforms, but integrated responses in 3D have largely not been explored systematically. To address this need, we developed a screening platform using polyethylene glycol norbornene (PEG-NB) as a model biomaterial with which the polymer wt% (to control elastic modulus) and adhesion peptide types (RGD, DGEA, YIGSR) and densities could be controlled independently and combinatorially in arrays of 3D hydrogels...
May 19, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28516795/a-comprehensive-guide-to-telocytes-and-their-great-potential-in-cardiovascular-system
#2
I Kucybala, P Janas, S Ciuk, W Cholopiak, W Klimek-Piotrowska, M K Holda
Telocytes, a recently discovered type of interstitial cells, have a very distinctive morphology - the small cell body with long extensions, named telopodes. In our review, apart from introducing general aspects of telocytes, we focus on properties, functions and future potential of those cells in cardiovascular system. However, physiological functions of telocytes in cardiovascular system are still regarded as quite enigmatic. Previous studies claim that they play a role in organogenesis and regeneration, bioelectrical signalling, mechanoelectrical coupling, anti-oxidative protection, angiogenesis and regulation of blood flow...
2017: Bratislavské Lekárske Listy
https://www.readbyqxmd.com/read/28482571/optimization-and-development-of-maghemite-%C3%AE-fe2o3-filled-poly-l-lactic-acid-plla-thermoplastic-polyurethane-tpu-electrospun-nanofibers-using-taguchi-orthogonal-array-for-tissue-engineering-heart-valve
#3
Ehsan Fallahiarezoudar, Mohaddeseh Ahmadipourroudposht, Ani Idris, Noordin Mohd Yusof
Tissue engineering (TE) is an advanced principle to develop a neotissue that can resemble the original tissue characteristics with the capacity to grow, to repair and to remodel in vivo. This research proposed the optimization and development of nanofiber based scaffold using the new mixture of maghemite (γ-Fe2O3) filled poly-l-lactic acid (PLLA)/thermoplastic polyurethane (TPU) for tissue engineering heart valve (TEHV). The chemical, structural, biological and mechanical properties of nanofiber based scaffold were characterized in terms of morphology, porosity, biocompatibility and mechanical behaviour...
July 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28453437/umbilical-cord-as-human-cell-source-for-mitral-valve-tissue-engineering-venous-vs-arterial-cells
#4
Axel Malischewski, Ricardo Moreira, Luis Hurtado, Valentine Gesché, Thomas Schmitz-Rode, Stefan Jockenhoevel, Petra Mela
Around 2% of the population in developed nations are affected by mitral valve disease and available valvular replacements are not designed for the atrioventricular position. Recently our group developed the first tissue-engineered heart valve (TEHV) specifically designed for the mitral position - the TexMi valve. The valve recapitulates the main components of the native valve, i.e. annulus, asymmetric leaflets and the crucial chordae tendineae. In the present study, we evaluated the human umbilical cord as a clinically applicable cell source for the TexMi valve...
April 28, 2017: Biomedizinische Technik. Biomedical Engineering
https://www.readbyqxmd.com/read/28445803/jetvalve-rapid-manufacturing-of-biohybrid-scaffolds-for-biomimetic-heart-valve-replacement
#5
Andrew K Capulli, Maximillian Y Emmert, Francesco S Pasqualini, Debora Kehl, Etem Caliskan, Johan U Lind, Sean P Sheehy, Sung Jin Park, Seungkuk Ahn, Benedikt Weber, Josue A Goss, Simon P Hoerstrup, Kevin Kit Parker
Tissue engineered scaffolds have emerged as a promising solution for heart valve replacement because of their potential for regeneration. However, traditional heart valve tissue engineering has relied on resource-intensive, cell-based manufacturing, which increases cost and hinders clinical translation. To overcome these limitations, in situ tissue engineering approaches aim to develop scaffold materials and manufacturing processes that elicit endogenous tissue remodeling and repair. Yet despite recent advances in synthetic materials manufacturing, there remains a lack of cell-free, automated approaches for rapidly producing biomimetic heart valve scaffolds...
April 18, 2017: Biomaterials
https://www.readbyqxmd.com/read/28362047/the-vietnamese-pig-as-a-translational-animal-model-to-evaluate-tissue-engineered-heart-valves-promising-early-experience
#6
Michele Gallo, Helen Poser, Tommaso Bottio, Antonella Bonetti, Paolo Franci, Filippo Naso, Edward Buratto, Fabio Zanella, Giovanni Perona, Carlo Dal Lin, Roberto Bianco, Michele Spina, Roberto Busetto, Maurizio Marchini, Fulvia Ortolani, Laura Iop, Gino Gerosa
Several animal models are currently used for the surgical implantation of either biologic or biopolymeric scaffolds in order to provide in vivo assessment of tissue-engineered heart valves. The Vietnamese pig (VP) is herein proposed as a suitable recipient to test the function of novel bioengineered valve substitutes, in the reconstruction of the right ventricular outflow tract (RVOT). This review aims to provide a complete and exhaustive panel of physiological parameters and methodological information for preclinical studies of tissue-engineered heart valves in the VP animal model...
May 9, 2017: International Journal of Artificial Organs
https://www.readbyqxmd.com/read/28314377/the-effects-of-scaffold-remnants-in-decellularized-tissue-engineered-cardiovascular-constructs-on-the-recruitment-of-blood-cells
#7
Bart Sanders, Anita Driessen-Mol, Carlijn V C Bouten, Frank P T Baaijens
Decellularized tissue-engineered heart valves (DTEHVs) showed remarkable results in translational animal models, leading to recellularization within hours after implantation. This is crucial to enable tissue remodeling. To investigate if the presence of scaffold remnants before implantation is responsible for the fast recellularization of DTEHVs, an in vitro mesofluidic system was used. Human granulocyte and agranulocyte fractions were isolated, stained, brought back in suspension, and implemented in the system...
April 14, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28289246/the-heart-and-great-vessels
#8
Ekene Onwuka, Nakesha King, Eric Heuer, Christopher Breuer
Cardiovascular disease is the leading cause of mortality worldwide. We have made large strides over the past few decades in management, but definitive therapeutic options to address this health-care burden are still limited. Given the ever-increasing need, much effort has been spent creating engineered tissue to replaced diseased tissue. This article gives a general overview of this work as it pertains to the development of great vessels, myocardium, and heart valves. In each area, we focus on currently studied methods, limitations, and areas for future study...
March 13, 2017: Cold Spring Harbor Perspectives in Medicine
https://www.readbyqxmd.com/read/28253994/in-situ-heart-valve-tissue-engineering-using-a-bioresorbable-elastomeric-implant-from-material-design-to-12-months-follow-up-in-sheep
#9
Jolanda Kluin, Hanna Talacua, Anthal I P M Smits, Maximilian Y Emmert, Marieke C P Brugmans, Emanuela S Fioretta, Petra E Dijkman, Serge H M Söntjens, Renée Duijvelshoff, Sylvia Dekker, Marloes W J T Janssen-van den Broek, Valentina Lintas, Aryan Vink, Simon P Hoerstrup, Henk M Janssen, Patricia Y W Dankers, Frank P T Baaijens, Carlijn V C Bouten
The creation of a living heart valve is a much-wanted alternative for current valve prostheses that suffer from limited durability and thromboembolic complications. Current strategies to create such valves, however, require the use of cells for in vitro culture, or decellularized human- or animal-derived donor tissue for in situ engineering. Here, we propose and demonstrate proof-of-concept of in situ heart valve tissue engineering using a synthetic approach, in which a cell-free, slow degrading elastomeric valvular implant is populated by endogenous cells to form new valvular tissue inside the heart...
May 2017: Biomaterials
https://www.readbyqxmd.com/read/28219851/understanding-the-requirements-of-self-expandable-stents-for-heart-valve-replacement-radial-force-hoop-force-and-equilibrium
#10
María Sol Cabrera, Cees W J Oomens, Frank P T Baaijens
A proper interpretation of the forces developed during stent crimping and deployment is of paramount importance for a better understanding of the requirements for successful heart valve replacement. The present study combines experimental and computational methods to assess the performance of a nitinol stent for tissue-engineered heart valve implantation. To validate the stent model, the mechanical response to parallel plate compression and radial crimping was evaluated experimentally. Finite element simulations showed good agreement with the experimental findings...
February 7, 2017: Journal of the Mechanical Behavior of Biomedical Materials
https://www.readbyqxmd.com/read/28183649/biological-and-mechanical-evaluation-of-a-bio-hybrid-scaffold-for-autologous-valve-tissue-engineering
#11
S Jahnavi, U Saravanan, N Arthi, G S Bhuvaneshwar, T V Kumary, S Rajan, R S Verma
Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties...
April 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28178887/magnesium-presence-prevents-removal-of-antigenic-nuclear-associated-proteins-from-bovine-pericardium-for-heart-valve-engineering
#12
Ailsa J Dalgliesh, Zhi Zhao Liu, Leigh G Griffiths
Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses...
March 10, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28110071/living-nano-micro-fibrous-woven-fabric-hydrogel-composite-scaffolds-for-heart-valve-engineering
#13
Shaohua Wu, Bin Duan, Xiaohong Qin, Jonathan T Butcher
Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation...
January 18, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28069510/species-specific-effects-of-aortic-valve-decellularization
#14
Mitchell C VeDepo, Eric E Buse, Rachael W Quinn, Todd D Williams, Michael S Detamore, Richard A Hopkins, Gabriel L Converse
Decellularized heart valves have great potential as a stand-alone valve replacement or as a scaffold for tissue engineering heart valves. Before decellularized valves can be widely used clinically, regulatory standards require pre-clinical testing in an animal model, often sheep. Numerous decellularization protocols have been applied to both human and ovine valves; however, the ways in which a specific process may affect valves of these species differently have not been reported. In the current study, the comparative effects of decellularization were evaluated for human and ovine aortic valves by measuring mechanical and biochemical properties...
January 6, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28051180/human-heart-valve-derived-scaffold-improves-cardiac-repair-in-a-murine-model-of-myocardial-infarction
#15
Long Wan, Yao Chen, Zhenhua Wang, Weijun Wang, Sebastian Schmull, Jun Dong, Song Xue, Hans Imboden, Jun Li
Cardiac tissue engineering using biomaterials with or without combination of stem cell therapy offers a new option for repairing infarcted heart. However, the bioactivity of biomaterials remains to be optimized because currently available biomaterials do not mimic the biochemical components as well as the structural properties of native myocardial extracellular matrix. Here we hypothesized that human heart valve-derived scaffold (hHVS), as a clinically relevant novel biomaterial, may provide the proper microenvironment of native myocardial extracellular matrix for cardiac repair...
January 4, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28038838/-interventional-cardiac-catheterization-in-congenital-heart-disease
#16
François Godart, Ali Houeijeh
Interventional cardiac catheterization has a major place in the management of congenital heart disease. Since the Rashkind atrioseptostomy in mid-1960s, many techniques have been developed. For some, it is necessary to close a cardiac or extracardiac shunt using occluder (double disc system, plug, coil…): closure of atrial septal defect, ventricular septal defect or patent arterial duct. For others, it is necessary to treat a valvular or vascular stenosis using a balloon catheter: dilatation of the pulmonary or the aortic valve, dilatation of aortic coarctation...
May 2017: La Presse Médicale
https://www.readbyqxmd.com/read/28008545/a-tri-leaflet-nitinol-mesh-scaffold-for-engineering-heart-valves
#17
S Hamed Alavi, Marc Soriano Baliarda, Noemi Bonessio, Lorenzo Valdevit, Arash Kheradvar
The epidemiology of valvular heart disease has significantly changed in the past few decades with aging as one of the main contributing factors. The available options for replacement of diseased valves are currently limited to mechanical and bioprosthetic valves, while the tissue engineered ones that are under study are currently far from clinical approval. The main problem with the tissue engineered heart valves is their progressive deterioration that leads to regurgitation and/or leaflet thickening a few months after implantation...
February 2017: Annals of Biomedical Engineering
https://www.readbyqxmd.com/read/27995570/hydrodynamic-assessment-of-aortic-valves-prepared-from-porcine-small-intestinal-submucosa
#18
Sharan Ramaswamy, Makensley Lordeus, Omkar V Mankame, Lilliam Valdes-Cruz, Steven Bibevski, Sarah M Bell, Ivan Baez, Frank Scholl
Infants and children born with severe cardiac valve lesions have no effective long term treatment options since currently available tissue or mechanical prosthetic valves have sizing limitations and no avenue to accommodate the growth of the pediatric patient. Tissue engineered heart valves (TEHVs) which could provide for growth, self-repair, infection resistance, and long-term replacement could be an ideal solution. Porcine small intestinal submucosa (PSIS) has recently emerged as a potentially attractive bioscaffold for TEHVs...
December 19, 2016: Cardiovascular Engineering and Technology
https://www.readbyqxmd.com/read/27990847/a-developmental-approach-to-induced-pluripotent-stem-cells-based-tissue-engineered-heart-valves
#19
Mark J Vander Roest, W David Merryman
No abstract text is available yet for this article.
January 2017: Future Cardiology
https://www.readbyqxmd.com/read/27884776/inverted-orientation-improves-decellularization-of-whole-porcine-hearts
#20
Po-Feng Lee, Eric Chau, Rafael Cabello, Alvin T Yeh, Luiz C Sampaio, Andrea S Gobin, Doris A Taylor
In structurally heterogeneous organs, such as heart, it is challenging to retain extracellular matrix integrity in the thinnest regions (eg, valves) during perfusion decellularization and completely remove cellular debris from thicker areas. The high inflow rates necessary to maintain physiologic pressure can distend or damage thin tissues, but lower pressures prolong the process and increase the likelihood of contamination. We examined two novel retrograde decellularization methods for porcine hearts: inverting the heart or venting the apex to decrease inflow rate...
November 21, 2016: Acta Biomaterialia
keyword
keyword
14707
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"