keyword
MENU ▼
Read by QxMD icon Read
search

Tissue engineered heart valves

keyword
https://www.readbyqxmd.com/read/27884776/inverted-orientation-improves-decellularization-of-whole-porcine-hearts
#1
Po-Feng Lee, Eric Chau, Rafael Cabello, Alvin T Yeh, Luiz C Sampaio, Andrea S Gobin, Doris A Taylor
In structurally heterogeneous organs, such as heart, it is challenging to retain extracellular matrix integrity in the thinnest regions (eg, valves) during perfusion decellularization and completely remove cellular debris from thicker areas. The high inflow rates necessary to maintain physiologic pressure can distend or damage thin tissues, but lower pressures prolong the process and increase the likelihood of contamination. We examined two novel retrograde decellularization methods for porcine hearts: inverting the heart or venting the apex to decrease inflow rate...
November 21, 2016: Acta Biomaterialia
https://www.readbyqxmd.com/read/27856282/numerical-investigation-of-the-influence-of-pattern-topology-on-the-mechanical-behavior-of-pegda-hydrogels
#2
Tao Jin, Ilinca Stanciulescu
: Poly(ethylene glycol) diacrylate (PEGDA) hydrogels can be potentially used as scaffold material for tissue engineered heart valves (TEHVs) due to their good biocompatibility and biomechanical tunability. The photolithographic patterning technique is an effective approach to pattern PEGDA hydrogels to mimic the mechanical behavior of native biological tissues that are intrinsically anisotropic. The material properties of patterned PEGDA hydrogels largely depend on the pattern topology...
November 14, 2016: Acta Biomaterialia
https://www.readbyqxmd.com/read/27843569/conceptual-model-for-early-health-technology-assessment-of-current-and-novel-heart-valve-interventions
#3
Simone A Huygens, Maureen P M H Rutten-van Mölken, Jos A Bekkers, Ad J J C Bogers, Carlijn V C Bouten, Steven A J Chamuleau, Peter P T de Jaegere, Arie Pieter Kappetein, Jolanda Kluin, Nicolas M D A van Mieghem, Michel I M Versteegh, Maarten Witsenburg, Johanna J M Takkenberg
OBJECTIVE: The future promises many technological advances in the field of heart valve interventions, like tissue-engineered heart valves (TEHV). Prior to introduction in clinical practice, it is essential to perform early health technology assessment. We aim to develop a conceptual model (CM) that can be used to investigate the performance and costs requirements for TEHV to become cost-effective. METHODS: After scoping the decision problem, a workgroup developed the draft CM based on clinical guidelines...
2016: Open Heart
https://www.readbyqxmd.com/read/27834758/current-status-of-tissue-engineering-heart-valve
#4
Toshiharu Shinoka, Hideki Miyachi
The development of surgically implantable heart valve prostheses has contributed to improved outcomes in patients with cardiovascular disease. However, there are drawbacks, such as risk of infection and lack of growth potential. Tissue-engineered heart valve (TEHV) holds great promise to address these drawbacks as the ideal TEHV is easily implanted, biocompatible, non-thrombogenic, durable, degradable, and ultimately remodels into native-like tissue. In general, three main components used in creating a tissue-engineered construct are (1) a scaffold material, (2) a cell type for seeding the scaffold, and (3) a subsequent remodeling process driven by cell accumulation and proliferation, and/or biochemical and mechanical signaling...
November 2016: World Journal for Pediatric & Congenital Heart Surgery
https://www.readbyqxmd.com/read/27834123/translational-applications-of-tissue-engineering-in-cardiovascular-medicine
#5
Y Murat Elçin, Arin Dogan, Eser Elçin
Cardiovascular diseases are the leading cause of worldwide deaths. Current paradigm in medicine seeks novel approaches for the treatment of progressive or end-stage diseases. The organ transplantation option is limited in availability and unfortunately, a great number of patients are lost while waiting for donor organs. Animal studies have shown that upon myocardial infarction, it may be possible to stop adverse remodeling in its tracks and reverse with tissue engineering methods. Regaining the myocardium function and avoiding further deterioration towards heart failure can benefit millions of people with a significantly lesser burden on healthcare systems worldwide...
November 11, 2016: Current Pharmaceutical Design
https://www.readbyqxmd.com/read/27789941/nanopatterned-acellular-valve-conduits-drive-the-commitment-of-blood-derived-multipotent-cells
#6
Rosa Di Liddo, Paola Aguiari, Silvia Barbon, Thomas Bertalot, Amit Mandoli, Alessia Tasso, Sandra Schrenk, Laura Iop, Alessandro Gandaglia, Pier Paolo Parnigotto, Maria Teresa Conconi, Gino Gerosa
Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition...
2016: International Journal of Nanomedicine
https://www.readbyqxmd.com/read/27780764/biodegradable-and-biomimetic-elastomeric-scaffolds-for-tissue-engineered-heart-valves
#7
REVIEW
Yingfei Xue, Vinayak Sant, Julie Phillippi, Shilpa Sant
Valvular heart diseases are the third leading cause of cardiovascular disease, resulting in more than 25,000 deaths annually in the United States. Heart valve tissue engineering (HVTE) has emerged as a putative treatment strategy such that the designed construct would ideally withstand native dynamic mechanical environment, guide regeneration of the diseased tissue and more importantly, have the ability to grow with the patient. These desired functions could be achieved by biomimetic design of tissue-engineered constructs that recapitulate in vivo heart valve microenvironment with biomimetic architecture, optimal mechanical properties and possess suitable biodegradability and biocompatibility...
October 22, 2016: Acta Biomaterialia
https://www.readbyqxmd.com/read/27780149/nanofibrous-bioengineered-heart-valve-application-in-paediatric-medicine
#8
REVIEW
Mehrdad Namdari, Ali Eatemadi
Heart valves are currently under thorough investigation in tissue engineering (TE) research. Mechanical and biological heart valve prostheses which are recently used have several shortcomings. While allogenic and xenogenic biological prostheses are related to graft rejection, degeneration and thrombosis, resulting in a high rate of reoperation. Mechanical prostheses on the other hand are based on metallic, carbon, and polymeric components, and require continuous treatment with anticoagulant, which result in adverse reactions, e...
October 22, 2016: Biomedicine & Pharmacotherapy, Biomédecine & Pharmacothérapie
https://www.readbyqxmd.com/read/27778297/intrinsic-cell-stress-is-independent-of-organization-in-engineered-cell-sheets
#9
Inge A E W van Loosdregt, Sylvia Dekker, Patrick W Alford, Cees W J Oomens, Sandra Loerakker, Carlijn V C Bouten
Understanding cell contractility is of fundamental importance for cardiovascular tissue engineering, due to its major impact on the tissue's mechanical properties as well as the development of permanent dimensional changes, e.g., by contraction or dilatation of the tissue. Previous attempts to quantify contractile cellular stresses mostly used strongly aligned monolayers of cells, which might not represent the actual organization in engineered cardiovascular tissues such as heart valves. In the present study, therefore, we investigated whether differences in organization affect the magnitude of intrinsic stress generated by individual myofibroblasts, a frequently used cell source for in vitro engineered heart valves...
October 24, 2016: Cardiovascular Engineering and Technology
https://www.readbyqxmd.com/read/27762592/fibrin-nanostructures-for-biomedical-applications
#10
Z Riedelová-Reicheltová, E Brynda, T Riedel
Fibrin is a versatile biopolymer that has been extensively used in tissue engineering. In this paper fibrin nanostructures prepared using a technique based on the catalytic effect of fibrin-bound thrombin are presented. This technique enables surface-attached thin fibrin networks to form with precisely regulated morphology without the development of fibrin gel in bulk solution. Moreover, the influence of changing the polymerization time, along with the antithrombin III and heparin concentrations on the morphology of fibrin nanostructures was explored...
October 20, 2016: Physiological Research
https://www.readbyqxmd.com/read/27721704/heart-valve-replacements-with-regenerative-capacity
#11
Petra E Dijkman, Emanuela S Fioretta, Laura Frese, Francesco S Pasqualini, Simon P Hoerstrup
The incidence of severe valvular dysfunctions (e.g., stenosis and insufficiency) is increasing, leading to over 300,000 valves implanted worldwide yearly. Clinically used heart valve replacements lack the capacity to grow, inherently requiring repetitive and high-risk surgical interventions during childhood. The aim of this review is to present how different tissue engineering strategies can overcome these limitations, providing innovative valve replacements that proved to be able to integrate and remodel in pre-clinical experiments and to have promising results in clinical studies...
July 2016: Transfusion Medicine and Hemotherapy
https://www.readbyqxmd.com/read/27709350/effect-of-side-specific-valvular-shear-stress-on-the-content-of-extracellular-matrix-in-aortic-valves
#12
Napachanok Mongkoldhumrongkul, Najma Latif, Magdi H Yacoub, Adrian H Chester
Responses of valve endothelial cells (VECs) to shear stresses are important for the regulation of valve durability. However, the effect of flow patterns subjected to VECs on the opposite surfaces of the valves on the production of extracellular matrix (ECM) has not yet been investigated. This study aims to investigate the response of side-specific flow patterns, in terms of ECM synthesis and/or degradation in porcine aortic valves. Aortic and ventricular sides of aortic valve leaflets were exposed to oscillatory and laminar flow generated by a Cone-and-Plate machine for 48 h...
October 5, 2016: Cardiovascular Engineering and Technology
https://www.readbyqxmd.com/read/27696730/the-future-of-heart-valve-replacement-recent-developments-and-translational-challenges-for-heart-valve-tissue-engineering
#13
Emanuela S Fioretta, Petra E Dijkman, Maximilian Y Emmert, Simon P Hoerstrup
Heart valve replacement is often the only solution for patients suffering from valvular heart disease. However, currently available valve replacements require either life-long anti-coagulation or are associated with valve degeneration and calcification. Moreover, they are suboptimal for young patients, because they do not adapt to the somatic growth. Tissue-engineering has been proposed as a promising approach to fulfill the urgent need for heart valve replacements with regenerative and growth capacity. This review will start with an overview on the currently available valve substitutes and the techniques for heart valve replacement...
September 30, 2016: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/27685946/calcific-aortic-valve-disease-is-associated-with-layer-specific-alterations-in-collagen-architecture
#14
Heather N Hutson, Taylor Marohl, Matthew Anderson, Kevin Eliceiri, Paul Campagnola, Kristyn S Masters
Disorganization of the valve extracellular matrix (ECM) is a hallmark of calcific aortic valve disease (CAVD). However, while microarchitectural features of the ECM can strongly influence the biological and mechanical behavior of tissues, little is known about the ECM microarchitecture in CAVD. In this work, we apply advanced imaging techniques to quantify spatially heterogeneous changes in collagen microarchitecture in CAVD. Human aortic valves were obtained from individuals between 50 and 75 years old with no evidence of valvular disease (healthy) and individuals who underwent valve replacement surgery due to severe stenosis (diseased)...
2016: PloS One
https://www.readbyqxmd.com/read/27673356/ultrasound-for-in-vitro-noninvasive-real-time-monitoring-and-evaluation-of-tissue-engineered-heart-valves
#15
Luis G Hurtado-Aguilar, Shane Mulderrig, Ricardo Moreira, Nima Hatam, Jan Spillner, Thomas Schmitz-Rode, Stefan Jockenhoevel, Petra Mela
Tissue-engineered heart valves are developed in bioreactors where biochemical and mechanical stimuli are provided for extracellular matrix formation. During this phase, the monitoring possibilities are limited by the need to maintain the sterility and the integrity of the valve. Therefore, noninvasive and nondestructive techniques are required. As such, optical imaging is commonly used to verify valve's functionality in vitro. It provides important information (i.e. leaflet symmetry, geometric orifice area, closing and opening times) which is, however, usually limited to a singular view along the central axis from the outflow side...
September 27, 2016: Tissue Engineering. Part C, Methods
https://www.readbyqxmd.com/read/27615551/valve-tissue-engineering-with-living-absorbable-threads
#16
Albert Ryszard Liberski, Christophe Michel Raynaud, Nadia Ayad, Dorota Wojciechowska, Abbirami Sathappan
Tissue engineering (TE) depends on the population of scaffolds with appropriate cells, arranged in a specific physiological direction using a variety of techniques. Here, a novel technique of creating "living threads" is described based on thin (poly(ε-caprolactone) fibers of different diameters (23-243 μm). The fibers readily attract human mesenchymal stem cells (MSCs), which are firmly adhered. These versatile fibers can be used to produce dimensional shapes identical in shape to the cup-like structure of a normal human valve, while preserving the specific orientation of both the cells and the fibers...
September 12, 2016: Macromolecular Bioscience
https://www.readbyqxmd.com/read/27610947/characterization-of-immunogenic-neu5gc-in-bioprosthetic-heart-valves
#17
Eliran Moshe Reuven, Shani Leviatan Ben-Arye, Tal Marshanski, Michael E Breimer, Hai Yu, Imen Fellah-Hebia, Jean-Christian Roussel, Cristina Costa, Manuel Galiñanes, Rafael Mañez, Thierry Le Tourneau, Jean-Paul Soulillou, Emanuele Cozzi, Xi Chen, Vered Padler-Karavani
BACKGROUND: The two common sialic acids (Sias) in mammals are N-acetylneuraminic acid (Neu5Ac) and its hydroxylated form N-glycolylneuraminic acid (Neu5Gc). Unlike most mammals, humans cannot synthesize Neu5Gc that is considered foreign and recognized by circulating antibodies. Thus, Neu5Gc is a potential xenogenic carbohydrate antigen in bioprosthetic heart valves (BHV) that tend to deteriorate in time within human patients. METHODS: We investigated Neu5Gc expression in non-engineered animal-derived cardiac tissues and in clinically used commercial BHV, and evaluated Neu5Gc immunogenicity on BHV through recognition by human anti-Neu5Gc IgG...
September 2016: Xenotransplantation
https://www.readbyqxmd.com/read/27541486/promotion-of-adhesion-and-proliferation-of-endothelial-progenitor-cells-on-decellularized-valves-by-covalent-incorporation-of-rgd-peptide-and-vegf
#18
Jianliang Zhou, Jingli Ding, Bin'en Nie, Shidong Hu, Zhigang Zhu, Jia Chen, Jianjun Xu, Jiawei Shi, Nianguo Dong
Tissue engineered heart valve is a promising alternative to current heart valve surgery, for its capability of growth, repair, and remodeling. However, extensive development is needed to ensure tissue compatibility, durability and antithrombotic potential. This study aims to investigate the biological effects of multi-signal composite material of polyethyl glycol-cross-linked decellularized valve on adhesion and proliferation of endothelial progenitor cells. Group A to E was decellularized valve leaflets, composite material of polyethyl glycol-cross-linked decellularized valves leaflets, vascular endothelial growth factor-composite materials, Arg-Gly-Asp peptide-composite materials and multi-signal modified materials of polyethyl glycol-cross-linked decellularized valve leaflets, respectively...
September 2016: Journal of Materials Science. Materials in Medicine
https://www.readbyqxmd.com/read/27523401/making-progress-toward-a-tissue-engineered-heart-valve
#19
EDITORIAL
John E Mayer
No abstract text is available yet for this article.
October 2016: Journal of Thoracic and Cardiovascular Surgery
https://www.readbyqxmd.com/read/27521817/experimental-investigations-on-the-fluid-mechanics-of-an-electrospun-heart-valve-by-means-of-particle-image-velocimetry
#20
Costantino Del Gaudio, Pier Luca Gasbarroni, Giovanni Paolo Romano
End-stage failing heart valves are currently replaced by mechanical or biological prostheses. Both types positively contribute to restore the physiological function of native valves, but a number of drawbacks limits the expected performances. In order to improve the outcome, tissue engineering can offer an alternative approach to design and fabricate innovative heart valves capable to support the requested function and to promote the formation of a novel, viable and correctly operating physiological structure...
December 2016: Journal of the Mechanical Behavior of Biomedical Materials
keyword
keyword
14707
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"