Read by QxMD icon Read

Tissue engineered heart valves

Sarah E Motta, Emanuela S Fioretta, Petra E Dijkman, Valentina Lintas, Luc Behr, Simon P Hoerstrup, Maximilian Y Emmert
Tissue-engineered heart valves with self-repair and regeneration properties may overcome the problem of long-term degeneration of currently used artificial prostheses. The aim of this study was the development and in vivo proof-of-concept of next-generation off-the-shelf tissue-engineered sinus valve (TESV) for transcatheter pulmonary valve replacement (TPVR). Transcatheter implantation of off-the-shelf TESVs was performed in a translational sheep model for up to 16 weeks. Transapical delivery of TESVs was successful and showed good acute and short-term performance (up to 8 weeks), which then worsened over time most likely due to a non-optimized in vitro valve design...
March 20, 2018: Journal of Cardiovascular Translational Research
Yoshiaki Takewa, Hirohito Sumikura, Satoru Kishimoto, Noritsugu Naito, Kei Iizuka, Daichi Akiyama, Ryosuke Iwai, Eisuke Tatsumi, Yasuhide Nakayama
Tissue-engineered heart valves (TEHVs) are expected to be viable grafts. However, it is unknown whether they transit their histological structure after implantation. We developed a novel autologous TEHV (named stent biovalve) for transcatheter implantation, using in-body tissue engineering based on a tissue encapsulation phenomenon. In this study, a time-course histological transition of implanted biovalves was investigated in goats. Three types of stent biovalves were prepared by 2 month embedding of plastic molds mounted with metallic stents, in the subcutaneous spaces...
March 5, 2018: ASAIO Journal: a Peer-reviewed Journal of the American Society for Artificial Internal Organs
Aline L Y Nachlas, Siyi Li, Rajneesh Jha, Monalisa Singh, Chunhui Xu, Michael E Davis
Despite recent advances in tissue engineered heart valves (TEHV), a major challenge is identifying a cell source for seeding TEHV scaffolds. Native heart valves are durable because valve interstitial cells (VICs) maintain tissue homeostasis by synthesizing and remodeling the extracellular matrix. In this study, the goal is to demonstrate that induced pluripotent stem cells (iPSC)-derived mesenchymal stem cells (iMSCs) can be derived from iPSCs using a feeder-free protocol and then further matured into VICs by encapsulation within 3D hydrogels...
March 2, 2018: Acta Biomaterialia
Min Zeng, Sha Jin, Kaiming Ye
Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting...
February 1, 2018: SLAS Technology
Safieh Boroumand, Shiva Asadpour, Aram Akbarzadeh, Reza Faridi-Majidi, Hossein Ghanbari
Despite recent advances in medicine and surgery, many people still suffer from cardiovascular diseases, which affect their life span and morbidity. Regenerative medicine and tissue engineering are novel approaches based on restoring or replacing injured tissues and organs with scaffolds, cells and growth factors. Scaffolds are acquired from two major sources, synthetic materials and naturally derived scaffolds. Biological scaffolds derived from native tissues and cell-derived matrix offer many advantages. They are more biocompatible with a higher affinity to cells, which facilitate tissue reconstruction...
January 2018: Regenerative Medicine
Pim J A Oomen, Maria A Holland, Carlijn V C Bouten, Ellen Kuhl, Sandra Loerakker
Tissue growth and remodeling are known to govern mechanical homeostasis in biological tissue, but their relative contributions to homeostasis remain unclear. Here, we use mechanical models, fueled by experimental findings, to demonstrate that growth and remodeling have different effects on heart valve stretch homeostasis during physiological postnatal development. Two developmental stages were considered: early-stage (from infant to adolescent) and late-stage (from adolescent to adult) development. Our models indicated that growth and remodeling play opposing roles in preserving tissue stretch and with time...
January 19, 2018: Scientific Reports
Neda Latifi, Meisam Asgari, Hojatollah Vali, Luc Mongeau
While collagen type I (Col-I) is commonly used as a structural component of biomaterials, collagen type III (Col-III), another fibril forming collagen ubiquitous in many soft tissues, has not previously been used. In the present study, the novel concept of an injectable hydrogel with semi-interpenetrating polymeric networks of heterotypic collagen fibrils, with tissue-specific Col-III to Col-I ratios, in a glycol-chitosan matrix was investigated. Col-III was introduced as a component of the novel hydrogel, inspired by its co-presence with Col-I in many soft tissues, its influence on the Col-I fibrillogenesis in terms of diameter and mechanics, and its established role in regulating scar formation...
January 18, 2018: Scientific Reports
Frantisek Straka, David Schornik, Jaroslav Masin, Elena Filova, Tomas Mirejovsky, Zuzana Burdikova, Zdenek Svindrych, Hynek Chlup, Lukas Horny, Matej Daniel, Jiri Machac, Jelena Skibová, Jan Pirk, Lucie Bacakova
The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells (PICs), which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells (VICs) in NAV tissue. The extracellular matrix (ECM) of HP had a statistically significantly (p ≤ 0...
January 17, 2018: Journal of Biomaterials Science. Polymer Edition
Kevin M Blum, Joseph D Drews, Christopher K Breuer
Heart valve disease carries a substantial risk of morbidity and mortality. Outcomes are significantly improved by valve replacement, but currently available mechanical and biological replacement valves are associated with complications of their own. Mechanical valves have a high rate of thromboembolism and require lifelong anticoagulation. Biological prosthetic valves have a much shorter lifespan, and they are prone to tearing and degradation. Both types of valves lack the capacity for growth, making them particularly problematic in pediatric patients...
February 13, 2018: Tissue Engineering. Part B, Reviews
Aline L Y Nachlas, Siyi Li, Michael E Davis
Tissue engineered heart valves (TEHVs) have the potential to address the shortcomings of current implants through the combination of cells and bioactive biomaterials that promote growth and proper mechanical function in physiological conditions. The ideal TEHV should be anti-thrombogenic, biocompatible, durable, and resistant to calcification, and should exhibit a physiological hemodynamic profile. In addition, TEHVs may possess the capability to integrate and grow with somatic growth, eliminating the need for multiple surgeries children must undergo...
December 2017: Advanced Healthcare Materials
Amrita Pal, Chandrashekhar Pathak, Brent Vernon
Animal tissue has an extended history of clinical use in applications like heart valve bioprosthesis devices, cardiovascular surgical applications etc. but often does not last long after implantation in the body due to rapid unwanted degradation. The goal of this work is to develop novel composite biomaterials by grafting biological tissue with synthetic, biodegradable polymers. In the current research phase, porcine submucosa, ureter and bovine pericardial tissue are grafted with poly DL-lactide (PLA), poly glycolide (PGA) and poly DL-lactide glycolide (PLGA) copolymers...
February 2018: Journal of Biomaterials Science. Polymer Edition
Jessica Haupt, Georg Lutter, Stanislav N Gorb, Dan T Simionescu, Derk Frank, Jette Seiler, Alina Paur, Irma Haben
OBJECTIVES: Biological tissue has great potential to function as bioprostheses in patients for heart valve replacement. As these matrices are mainly xenogenic, the immunogenicity needs to be reduced by decellularization steps. Reseeding of bioscaffolds has tremendous potential to prevent calcification upon implantation, so intact microstructure of the material is mandatory. An optimal decellularization protocol of heart valves resulting in adequate preservation of the extracellular architecture has still not been developed...
February 1, 2018: Interactive Cardiovascular and Thoracic Surgery
Rosaria Santoro, Seshasailam Venkateswaran, Francesco Amadeo, Rong Zhang, Maura Brioschi, Anthony Callanan, Marco Agrifoglio, Cristina Banfi, Mark Bradley, Maurizio Pesce
Calcific aortic valve disease (CAVD) is the most frequent cardiac valve pathology. Its standard treatment consists of surgical replacement either with mechanical (metal made) or biological (animal tissue made) valve prostheses, both of which have glaring deficiencies. In the search for novel materials to manufacture artificial valve tissue, we have conducted a high-throughput screening with subsequent up-scaling to identify non-degradable polymer substrates that promote valve interstitial cells (VICs) adherence/growth and, at the same time, prevent their evolution toward a pro-calcific phenotype...
November 17, 2017: Biomaterials Science
Annelies Roosens, Mahtab Asadian, Nathalie De Geyter, Pamela Somers, Ria Cornelissen
To date, a completely in vitro repopulated tissue-engineered heart valve has not been developed. This study focused on sequentially seeding 2 cell populations onto porcine decellularized heart valve leaflets (HVL) and pericardia (PER) to obtain fully repopulated tissues. For repopulation of the interstitium, porcine valvular interstitial cells (VIC) and bone marrow-derived mesenchymal stem cells (BM-MSC) or adipose tissue-derived stem cells (ADSC) were used. In parallel, the culture medium was supplemented with ascorbic acid 2-phosphate (AA) and its effect on recolonization was investigated...
2017: Cells, Tissues, Organs
Maximilian Y Emmert, Simon P Hoerstrup
No abstract text is available yet for this article.
March 1, 2017: European Heart Journal
Filippo Naso, Alessandro Gandaglia
Xenogeneic decellularized heart valve scaffolds have the potential to overcome the limitations of existing bioprosthetic heart valves that have limited duration due to calcification and tissue degeneration phenomena. This article presents a review of 30 years of decellularization approaches adopted in cardiovascular tissue engineering, with a focus on the use, either individually or in combination, of different detergents. The safety and efficacy of cell-removal procedures are specifically reported and discussed, as well as the structure and biomechanics of the treated extracellular matrix (ECM)...
October 22, 2017: Xenotransplantation
Alexander Williams, Sana Nasim, Manuel Salinas, Arash Moshkforoush, Nikolaos Tsoukias, Sharan Ramaswamy
Fluid-induced shear stresses are involved in the development of cardiovascular tissues. In a tissue engineering framework, this stimulus has also been considered as a mechanical regulator of stem cell differentiation. We recently demonstrated that the fluid-oscillating effect in combination with a physiologically-relevant shear stress magnitude contributes to the formation of stem cell-derived de novo heart valve tissues. However, the range of oscillations necessary to induce favorable gene expression and engineered tissue formation is unknown...
October 7, 2017: Journal of Biomechanics
Antonio D'Amore, Samuel K Luketich, Giuseppe M Raffa, Salim Olia, Giorgio Menallo, Antonino Mazzola, Flavio D'Accardi, Tamir Grunberg, Xinzhu Gu, Michele Pilato, Marina V Kameneva, Vinay Badhwar, William R Wagner
Valvular heart disease is currently treated with mechanical valves, which benefit from longevity, but are burdened by chronic anticoagulation therapy, or with bioprosthetic valves, which have reduced thromboembolic risk, but limited durability. Tissue engineered heart valves have been proposed to resolve these issues by implanting a scaffold that is replaced by endogenous growth, leaving autologous, functional leaflets that would putatively eliminate the need for anticoagulation and avoid calcification. Despite the diversity in fabrication strategies and encouraging results in large animal models, control over engineered valve structure-function remains at best partial...
October 6, 2017: Biomaterials
Prashanth Ravishankar, M Alejandra Zeballos, Kartik Balachandran
The existence of endothelial progenitor cells (EPCs) in peripheral blood and its involvement in vasculogenesis was first reported by Ashara and colleagues(1). Later, others documented the existence of similar types of EPCs originating from bone marrow(2)(,)(3). More recently, Yoder and Ingram showed that EPCs derived from umbilical cord blood had a higher proliferative potential compared to ones isolated from adult peripheral blood(4)(,)(5)(,)(6). Apart from being involved in postnatal vasculogenesis, EPCs have also shown promise as a cell source for creating tissue-engineered vascular and heart valve constructs(7)(,)(8)...
September 14, 2017: Journal of Visualized Experiments: JoVE
Mitchell C VeDepo, Michael S Detamore, Richard A Hopkins, Gabriel L Converse
The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered heart valve: assuring consistent recellularization of the entire valve leaflets by phenotypically appropriate cells...
January 2017: Journal of Tissue Engineering
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"