Read by QxMD icon Read

Disinfection byproduct

Chao Liu, Christopher I Olivares, Ameet J Pinto, Chance V Lauderdale, Jess Brown, Meric Selbes, Tanju Karanfil
While disinfection provides hygienically safe drinking water, the disinfectants react with inorganic or organic precursors, leading to the formation of harmful disinfection byproducts (DBPs). Biological filtration is a process in which an otherwise conventional granular filter is designed to remove not only fine particulates but also dissolved organic matters (e.g., DBP precursors) through microbially mediated degradation. Recently, applications of biofiltration in drinking water treatment have increased significantly...
August 4, 2017: Water Research
Tingting Gong, Yuxian Tao, Xiangru Zhang, Shaoyang Hu, Jinbao Yin, Qiming Xian, Jian Ma, Bin Xu
Aromatic iodinated disinfection byproducts (DBPs) are a newly identified category of highly toxic DBPs. Among the identified aromatic iodinated DBPs, 2,4,6-triiodophenol and 2,6-diiodo-4-nitro- phenol have shown relatively widespread occurrence and high toxicity. In this study, we found that 4-iodophenol underwent transformation to form 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol in the presence of monochloramine. The transformation pathways were investigated, the decomposition kinetics of 4-iodophenol and the formation of 2,4,6-triiodophenol and 2,6-diiodo-4-nitrophenol were studied, the factors affecting the transformation were examined, the toxicity change during the transformation was evaluated, and the occurrence of the proposed transformation pathways during chloramination of source water was verified...
August 14, 2017: Environmental Science & Technology
Ye Du, Xiao-Tong Lv, Qian-Yuan Wu, Da-Yin Zhang, Yu-Ting Zhou, Lu Peng, Hong-Ying Hu
Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts (DBPs) and toxicity. This study reviewed the formation and control strategies for DBPs and toxicity in reclaimed water during chlorination. Both regulated and emerging DBPs have been frequently detected in reclaimed water during chlorination at a higher level than those in drinking water, indicating they pose a greater risk to humans. Luminescent bacteria and Daphnia magna acute toxicity, anti-estrogenic activity and cytotoxicity generally increased after chlorination because of the formation of DBPs...
August 2017: Journal of Environmental Sciences (China)
Shahid Parvez, Glenn E Rice, Linda K Teuschler, Jane Ellen Simmons, Thomas F Speth, Susan D Richardson, Richard J Miltner, E Sidney Hunter, Jonathan G Pressman, Lillian F Strader, Gary R Klinefelter, Jerome M Goldman, Michael G Narotsky
A method based on regression modeling was developed to discern the contribution of component chemicals to the toxicity of highly complex, environmentally realistic mixtures of disinfection byproducts (DBPs). Chemical disinfection of drinking water forms DBP mixtures. Because of concerns about possible reproductive and developmental toxicity, a whole mixture (WM) of DBPs produced by chlorination of a water concentrate was administered as drinking water to Sprague-Dawley (S-D) rats in a multigenerational study...
August 2017: Journal of Environmental Sciences (China)
Katherine Z Fu, Jinhua Li, Sai Vemula, Birget Moe, Xing-Fang Li
Human neural stem cells (hNSCs) are a useful tool to assess the developmental effects of various environmental contaminants; however, the application of hNSCs to evaluate water disinfection byproducts (DBPs) is scarce. Comprehensive toxicological results are essential to the prioritization of DBPs for further testing and regulation. Therefore, this study examines the effects of DBPs on the proliferation and differentiation of hNSCs. Prior to DBP treatment, characteristic protein markers of hNSCs from passages 3 to 6 were carefully examined and it was determined that hNSCs passaged 3 or 4 times maintained stem cell characteristics and can be used for DBP analysis...
August 2017: Journal of Environmental Sciences (China)
Justin A Pals, Elizabeth D Wagner, Michael J Plewa, Menghang Xia, Matias S Attene-Ramos
Haloacetamides (HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residues through an SN2 reaction mechanism. Toxicity of the monohalogenated HAMs (iodoacetamide, IAM; bromoacetamide, BAM; or chloroacetamide, CAM) varied depending on the halogen substituent. The aim of this research was to investigate how the halogen atom affects the reactivity and toxicological properties of HAMs, measured as induction of oxidative/electrophilic stress response and genotoxicity...
August 2017: Journal of Environmental Sciences (China)
Solomon Ioannou, Xanthi D Andrianou, Pantelis Charisiadis, Konstantinos C Makris
Increased disinfectant use commonly takes place in hospitals and other health care settings. A cross-sectional study among active nurses in two Cypriot public hospitals (n=179) was conducted to examine the prevalence of exposure to disinfection byproducts (DBPs), such as trihalomethanes (THMs) using both self-reported information and biomarker measurements. The objectives of this study were to: i) quantify the magnitude and variability of occupational exposure to disinfectants/DBPs in nurses, ii) generate job exposure matrices (JEM) and job task exposure matrices (JTEM) for disinfectants, and iii) assess the major determinants of urinary THMs in nurses...
August 2017: Journal of Environmental Sciences (China)
Chelsea Kolb, Royce A Francis, Jeanne M VanBriesen
Natural and anthropogenic factors can alter bromide concentrations in drinking water sources. Increasing source water bromide concentrations increases the formation and alters the speciation of disinfection byproducts (DBPs) formed during drinking water treatment. Brominated DBPs are more toxic than their chlorinated analogs, and thus have a greater impact on human health. However, DBPs are regulated based on the mass sum of DBPs within a given class (e.g., trihalomethanes and haloacetic acids), not based on species-specific risk or extent of bromine incorporation...
August 2017: Journal of Environmental Sciences (China)
Julien Le Roux, Michael J Plewa, Elizabeth D Wagner, Maolida Nihemaiti, Azra Dad, Jean-Philippe Croué
The reclamation and disinfection of waters impacted by human activities (e.g., wastewater effluent discharges) are of growing interest for various applications but has been associated with the formation of toxic nitrogenous disinfection byproducts (N-DBPs). Monochloramine used as an alternative disinfectant to chlorine can be an additional source of nitrogen in the formation of N-DBPs. Individual toxicity assays have been performed on many DBPs, but few studies have been conducted with complex mixtures such as wastewater effluents...
August 2017: Journal of Environmental Sciences (China)
Shunke Ding, Wenhai Chu, Tom Bond, Qi Wang, Naiyun Gao, Bin Xu, Erdeng Du
The occurrence of pharmaceuticals and personal care products (PPCPs) in natural waters, which act as drinking water sources, raises concerns. Moreover, those compounds incompletely removed by treatment have the chance to form toxic disinfection byproducts (DBPs) during subsequent disinfection. In this study, acetaminophen (Apap), commonly used to treat pain and fever, was selected as a model PPCP. The formation of carbonaceous and nitrogenous DBPs, namely trihalomethanes, haloacetonitriles, and haloacetamides, during chlor(am)ination of Apap was investigated...
July 25, 2017: Journal of Hazardous Materials
Ying Xia, Yi-Li Lin, Bin Xu, Chen-Yan Hu, Ze-Chen Gao, Wen-Hai Chu, Nai-Yun Gao
Iodide (I(-)) and iodinated X-ray contrast media (ICM) are the primary iodine sources for the formation of iodinated disinfection byproducts (I-DBPs), and iodate (IO3(-)) is believed to be a desired sink of iodine in water. This study found that highly cytotoxic iodinated trihalomethanes (I-THMs) also can be generated from iodate-containing waters (without any other iodine sources) in the presence of zero valent iron (ZVI) during chloramination, which could be a big issue in the wide usage of iron pipes. The effect of major factors including ZVI dosage, NH2Cl and IO3(-) concentrations, initial pH, Br(-)/IO3(-) molar ratio, phosphate concentration, iron corrosion scales (goethite and hematite) on the formation of I-THMs were investigated...
July 24, 2017: Water Research
Tom Bond, Nigel Graham
Quantitative methods which link molecular descriptors for recognized precursors to formation of drinking water disinfection byproducts are scarce. This study aimed to develop a simple mathematical tool for predicting chloroform (trichloromethane) yields resulting from aqueous chlorination of model organic precursors. Experimental chloroform yields from 211 precursors were collated from 22 literature studies from 1977 onwards. Nineteen descriptors, some established and others developed during this study, were used as inputs in a multiple linear regression model...
July 24, 2017: Water Research
Ye Du, Xue Zhang, Chao Li, Qian-Yuan Wu, Huang Huang, Hong-Ying Hu
Reclaimed water is usually stored in rivers or lakes before subsequent use. In storage ecosystems, the natural process of solar light irradiation plays a key role in water quality, altering disinfection byproduct formation potential in later use. This study investigated changes in haloacetamide formation potential (HAcAm FP) during subsequent chloramination when reclaimed water was exposed to solar light irradiation. Significant decreases in HAcAm FP were observed for the solar light irradiated reclaimed water, with reductions of 27%-69% for different haloacetamides...
July 10, 2017: Journal of Hazardous Materials
Benhamimed El-Attafia, Moulessehoul Soraya
BACKGROUND: The use of chlorine to disinfect water, produces various disinfection byproducts such as trihalomethanes (THMs). These compounds are formed when free available chlorine reacts with natural organic matter in raw water during water disinfection. Epidemiologic studies have shown an association between long-term exposure to THMs and an increased risk of cancer, all of them are suspected of having carcinogenic effects. AIM: The aim of this study was to determine the presence of THMs in the drinking tap water of Mostaganem Province (Algeria) in order to assess the seasonal variation in trihalomethane levels in tap water and to identify the season of high risk to the consumer...
May 2017: Electronic Physician
Jinbao Yin, Bing Wu, Xu-Xiang Zhang, Qiming Xian
Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts have been widely found in drinking water. In vitro test found HNMs could induce higher cytotoxicity and genotoxicity than trihalomethanes and haloacetic acids. However, data on toxic effect from in vivo experiment is limited. In this study, bromonitromethane (BNM), bromochloronitromethane (BCNM) and trichloronitromethane (TCNM) were chosen as target HNMs, and exposed to mice for 30 d. Hepatic toxicity and serum metabolic profiles were determined to reveal toxic effects and mechanisms of the three HNMs...
October 2017: Chemosphere
Popta Deeudomwongsa, Songkeart Phattarapattamawong, Kun-Yi Andrew Lin
The objective of this study was to remove regulated DBP precursors by using ozonation and peroxone process (H2O2/O3). Regarding formation potentials of trihalomethanes (THMs) and haloacetic acids (HAAs), the role of chloride in chlorination and ozonation/peroxone processes was revealed. The organic compounds in water samples from rapid sand filtration preferably yielded the THM formation potentials, rather than HAAs. Ozonation with the typical applied doses (1-5 mg L(-1)) was ineffective for removals of THM and HAA precursors...
October 2017: Chemosphere
Jie Fu, Wan-Ning Lee, Clark Coleman, Kirk Nowack, Jason Carter, Ching-Hua Huang
The removal of precursors of 36 disinfection byproducts (DBPs) in effluents from flocculation/sedimentation process was evaluated across a pilot-scale two-stage biofiltration process, i.e., a sand/anthracite (SA) biofilter (empty bed contact time (EBCT) of 7.5 min) coupled with a biologically-active granular activated carbon (GAC) contactor (EBCT of 15 min). The biofiltration process exhibited a good capacity for removal of the total DBP formation potential (DBPFP) (by 25.90 ± 2.63%), and GAC contactors contributed most to the DBPFP removal (accounting for 60...
June 27, 2017: Water Research
Lillian C Jeznach, Mark Hagemann, Mi-Hyun Park, John E Tobiason
Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston...
June 28, 2017: Journal of Environmental Management
Kuo-Pei Tsai, Habibullah Uzun, Tanju Karanfil, Alex T Chow
Wildfires can elevate dissolved organic matter (DOM) levels due to ash input and algal growth in source waters, and consequently impacting disinfection byproduct (DBP) formation in finished water; however, it remains unclear how quality and quantity of overall allochthonous and autochthonous DOM as well as associated DBP formation are changed during an entire algal life cycle. Microcystis aeruginosa was cultured in the medium containing low and high concentrations [10% and 65% (v/v)] of black and white ash water extracts (BE and WE) to study dynamic changes of carbonaceous, nitrogenous, and oxygenated DBP precursors during algal growth...
July 19, 2017: Environmental Science & Technology
Hyun-Chul Kim, Won Mo Lee, Seunghak Lee, Jaewon Choi, Sung Kyu Maeng
In this study, the organic components were identified that are mainly responsible for the formation of disinfection byproducts (DBPs) and for the biostability of urban surface water. The compositional distribution of dissolved organic matter (DOM) was strongly associated with the potential for both DBP formation and bacterial growth. Further evaluation was carried out (1) to compare the potential for DBP formation upon chlorination of treated water, (2) to determine the biostability that might result from minimizing assimilable organic carbon (AOC), and (3) to use laboratory-scale soil-column experiments to compare the effects of removal of trace organic chemicals (TOrCs) between managed aquifer recharge (MAR) hybrid systems (such as bank filtration followed by artificial recharge and recovery: ARR), and ozonation followed by ARR...
June 14, 2017: Water Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"