Read by QxMD icon Read

Cell polarity

Oriane Blanquie, Frank Bradke
Recent years have seen cytoskeleton dynamics emerging as a key player in axon regeneration. The cytoskeleton, in particular microtubules and actin, ensures the growth of neuronal processes and maintains the singular, highly polarized shape of neurons. Following injury, adult central axons are tipped by a dystrophic structure, the retraction bulb, which prevents their regeneration. Abnormal cytoskeleton dynamics are responsible for the formation of this growth-incompetent structure but pharmacologically modulating cytoskeleton dynamics of injured axons can transform this structure into a growth-competent growth cone...
March 12, 2018: Current Opinion in Neurobiology
Irena Branyikova, Monika Filipenska, Katerina Urbanova, Marek C Ruzicka, Martin Pivokonsky, Tomas Branyik
Alkaline flocculation has been studied due to its potential as a low-cost harvesting method for microalgae. However, surface properties (zeta potential, contact angles) as inputs into physicochemical interaction models have not yet been applied systematically. In this work, forced alkaline flocculation of the freshwater microalgae Chlorella vulgaris induced by calcium phosphate precipitates was studied as a model system. Response surface methodology was used to quantify the effect of independent variables (concentration of Ca2+ (0...
March 6, 2018: Colloids and Surfaces. B, Biointerfaces
Sara Sigismund, Giorgio Scita
An explosive growth in knowledge, in the last two decades, has conferred a new dimension to the process of endocytosis. Endocytic circuitries have come into focus as a pervasive system that controls virtual all aspects of cell biology. A few years ago, we proposed the term 'endocytic matrix' to define a cellular network of signalling wiring that is at the core of the cellular blueprint. A primary role of the endocytic matrix is the delivery of space-resolved and time-resolved signals to the cell in an interpretable format, and, as such, it has profound consequences on polarized cellular and supra-cellular functions, first and foremost, cell motility...
March 12, 2018: Current Opinion in Cell Biology
Yasmine Baktash, Anisha Madhav, Kelly E Coller, Glenn Randall
Hepatitis C virus (HCV) enters hepatocytes via various entry factors, including scavenger receptor BI (SR-B1), cluster of differentiation 81 (CD81), epidermal growth factor receptor (EGFR), claudin-1 (CLDN1), and occludin (OCLN). As CLDN1 and OCLN are not readily accessible due to their tight junctional localization, HCV likely accesses them by either disrupting cellular polarity or migrating to the tight junction. In this study, we image HCV entry into a three-dimensional polarized hepatoma system and reveal that the virus sequentially engages these entry factors through actin-dependent mechanisms...
March 14, 2018: Cell Host & Microbe
Xiumei Che, Ki Cheong Park, Soo Jung Park, You Hyun Kang, Hyun A Jin, Joo Wan Kim, Dong Hyuk Seo, Dae Kyu Kim, Tae Il Kim, Won Ho Kim, Seung Won Kim, Jae Hee Cheon
Triggering receptor expressed on myeloid cells 1 (TREM-1)-expressing intestinal macrophages are significantly increased in the colons of patients with inflammatory bowel disease (IBD). We focused here on the effects of guggulsterone on macrophage modulation in colitis as a potential therapeutic molecule in human IBD and explore the underlying mechanisms. Gene expression in macrophages was examined and wound healing assay using HT-29 cells was performed. Colitis in wild type and IL-10-, TLR4-, and MyD88-deficient mice was induced via the administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the colon...
March 15, 2018: American Journal of Physiology. Gastrointestinal and Liver Physiology
Verónica M Negrón-Pérez, Luana Teixeira Rodrigues, Gisele Zoccal Mingoti, Peter J Hansen
Rho-associated coiled-coil containing protein kinases (ROCK1 and ROCK2) are activated by binding to RHO GTPases and phosphorylate a variety of downstream targets including actinomyosin. In the mouse embryo, ROCK signaling acts to promote formation of trophectoderm (TE) and inhibit formation of the inner cell mass (ICM) by polarizing outer cells of the embryo to inactivate Hippo signaling (Kono et al., 2014; Mihajlović and Bruce, 2016). This article is protected by copyright. All rights reserved.
March 15, 2018: Molecular Reproduction and Development
David R Glenn, Dominik B Bucher, Junghyun Lee, Mikhail D Lukin, Hongkun Park, Ronald L Walsworth
Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen-vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen-vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency)...
March 14, 2018: Nature
Frank Jülicher, Stephan W Grill, Guillaume Salbreux
We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels...
March 15, 2018: Reports on Progress in Physics
William C Smith
This review covers recent advances in our understanding of the cell biology and morphogenesis of the ascidian notochord. In its development, the ascidian notochord undergoes a rapid series of cellular and morphogenic events that transform a group of 40 loosely packed cells in the neurula embryo into a tubular column with central lumen in the larva. The ascidian notochord has been a subject of intensive research in recent years, and particular focus in this review will be on events associated with the development and function of polarized cell properties, and the mechanism of lumen formation...
2018: Advances in Experimental Medicine and Biology
Maria E Piroli, Ehsan Jabbarzadeh
Human stem cells hold significant potential for the treatment of various diseases. However, their use as a therapy is hampered because of limited understanding of the mechanisms by which they respond to environmental stimuli. Efforts to understand extracellular biophysical cues have demonstrated the critical roles of geometrical and mechanical signals in determining the fate of stem cells. The goal of this study was to explore the interplay between cell polarity and matrix stiffness in stem cell lineage specification...
March 14, 2018: Annals of Biomedical Engineering
Muhammad Ramzan Manwar Hussain, Zeeshan Iqbal, Wajahat M Qazi, Daniel C Hoessli
The structural and functional diversity of the human proteome is mediated by N - and O- linked glycosylations that define the individual properties of extracellular and membrane-associated proteins. In this study, we utilized different computational tools to perform in silico based genome-wide mapping of 1,117 human proteins and unravel the contribution of both penultimate and vicinal amino acids for the asparagine-based, site-specific N -glycosylation. Our results correlate the non-canonical involvement of charge and polarity environment of classified amino acids (designated as L, O, A, P, and N groups) in the N -glycosylation process, as validated by NetNGlyc predictions, and 130 literature-reported human proteins...
2018: Frontiers in Oncology
Francisco Lopez-Tapia, Christine Brotherton-Pleiss, Peibin Yue, Heide Murakami, Ana Carolina Costa Araujo, Bruna Reis Dos Santos, Erin Ichinotsubo, Anna Rabkin, Raj Shah, Megan Lantz, Suzie Chen, Marcus A Tius, James Turkson
The molecular determinants for the activities of the reported benzoic acid (SH4-54), salicylic acid (BP-1-102), and benzohydroxamic acid (SH5-07)-based STAT3 inhibitors were investigated to design optimized analogues. All three leads are based on an N -methylglycinamide scaffold, with its two amine groups condensed with three different functionalities. The three functionalities and the CH2 group of the glycinamide scaffold were separately modified. The replacement of the pentafluorobenzene or cyclohexylbenzene, or replacing the benzene ring of the aromatic carboxylic or hydroxamic acid motif with heterocyclic components (containing nitrogen and oxygen elements) all decreased potency...
March 8, 2018: ACS Medicinal Chemistry Letters
Lars Kullmann, Michael P Krahn
The tumor suppressor LKB1 is an essential serine/threonine kinase, which regulates various cellular processes such as cell metabolism, cell proliferation, cell polarity, and cell migration. Germline mutations in the STK11 gene (encoding LKB1) are the cause of the Peutz-Jeghers syndrome, which is characterized by benign polyps in the intestine and a higher risk for the patients to develop intestinal and extraintestinal tumors. Moreover, mutations and misregulation of LKB1 have been reported to occur in most types of tumors and are among the most common aberrations in lung cancer...
March 15, 2018: Oncogene
Jiajia Xi, Qian Huang, Lei Wang, Xiaodong Ma, Qipan Deng, Munish Kumar, Zhiyuan Zhou, Ling Li, Zhaoyang Zeng, Ken H Young, Mingzhi Zhang, Yong Li
MicroRNA-21 (miR-21) is one of the most abundant microRNAs in mammalian cells. It has been intensively studied for its role in regulating apoptosis and oncogenic transformation. However, the impact of miR-21 on host anti-tumor immunity remains unknown. Tumor-associated macrophages are a major leukocyte type that infiltrates tumors and predominantly develops into immunosuppressive, tumor-promoting M2-like macrophages. In contrast, the pro-inflammatory M1-like macrophages have tumoricidal activity. In this study, we show that genetic deficiency of miR-21 promotes the polarization of macrophages toward an M1-like phenotype in vivo and in vitro in the presence of tumor cells; thus it confers host mice with enhanced anti-tumor immunity...
March 15, 2018: Oncogene
Dhivya Kumar, Rebecca T Thomason, Maya Yankova, Jonathan D Gitlin, Richard E Mains, Betty A Eipper, Stephen M King
The assembly of membranous extensions such as microvilli and cilia in polarized cells is a tightly regulated, yet poorly understood, process. Peptidylglycine α-amidating monooxygenase (PAM), a membrane enzyme essential for the synthesis of amidated bioactive peptides, was recently identified in motile and non-motile (primary) cilia and has an essential role in ciliogenesis in Chlamydomonas, Schmidtea and mouse. In mammalian cells, changes in PAM levels alter secretion and organization of the actin cytoskeleton...
March 14, 2018: Scientific Reports
Ren-Hong Du, Hong-Bin Sun, Zhao-Li Hu, Ming Lu, Jian-Hua Ding, Gang Hu
Classical activation (M1 phenotype) and alternative activation (M2 phenotype) are the two polars of microglial activation states that can produce either neurotoxic or neuroprotective effects in the immune pathogenesis of Parkinson's disease (PD). Exploiting the beneficial properties of microglia cells by modulating their polarization states provides great potential for the treatment of PD. However, the mechanism that regulates microglia polarization remains elusive. Here we demonstrated that Kir6.1-containing ATP-sensitive potassium (Kir6...
March 14, 2018: Cell Death & Disease
Yi-Shu Huang, Nien-Yi Chiang, Gin-Wen Chang, Hsi-Hsien Lin
The evolutionarily conserved adhesion G protein-coupled receptors (aGPCRs) play critical roles in biological processes as diverse as brain development, cell polarity and innate immune functions. A defining feature of aGPCRs is the GPCR autoproteolysis inducing (GAIN) domain capable of self-catalytic cleavage, resulting in the generation of an extracellular N-terminal fragment (NTF) and a seven-transmembrane C-terminal fragment (CTF) involved in the cellular adhesion and signaling functions, respectively. Interestingly, two different NTF subtypes have previously been identified, namely an NTF that couples non-covalently with the CTF and a membrane-associated NTF that tethers on cell surface independently...
March 14, 2018: Scientific Reports
Mei Jiang, Xinghui Liu, Denghai Zhang, Ying Wang, Xiaoxia Hu, Fengxia Xu, Mingming Jin, Fanfan Cao, Limin Xu
BACKGROUND: Acute ischemic stroke (AIS) is the most common type of cerebrovascular disease and is a leading cause of disability and death worldwide. Recently, a study suggested that transformation of microglia from the pro-inflammatory M1 state to the anti-inflammatory and tissue-reparative M2 phenotype may be an effective therapeutic strategy for ischemic stroke. Celastrol, a traditional oriental medicine, may have anti-inflammatory and neuroprotective effects. However, the underlying mechanisms remain unknown...
March 14, 2018: Journal of Neuroinflammation
Tonni Grube Andersen, Sadaf Naseer, Robertas Ursache, Brecht Wybouw, Wouter Smet, Bert De Rybel, Joop E M Vermeer, Niko Geldner
In vascular plants, the root endodermis surrounds the central vasculature as a protective sheath that is analogous to the polarized epithelium in animals, and contains ring-shaped Casparian strips that restrict diffusion. After an initial lag phase, individual endodermal cells suberize in an apparently random fashion to produce 'patchy' suberization that eventually generates a zone of continuous suberin deposition. Casparian strips and suberin lamellae affect paracellular and transcellular transport, respectively...
March 14, 2018: Nature
Mouadh Mihoub, André Pichette, Balla Sylla, Charles Gauthier, Jean Legault
Betulin has a wide range of biological and pharmacological properties with its anticancer activity attracting most of the attention as it offers a possible alternative treatment to chemotherapy. However, betulin's in vivo biological effectiveness is limited by its poor solubility. As such, we synthesized polar glycosylated derivatives to increase its hydrosolubility and enhance its pharmacological properties. Among these synthesized compounds, 28-O-α-l-rhamnopyranosylbetulin 3β-O-α-l-rhamnopyranoside (Bi-L-RhamBet) was assessed for its cytotoxic effects against a suite of lung cancer cell lines...
2018: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"