keyword
MENU ▼
Read by QxMD icon Read
search

Stem cell,hydrogel,scaffold

keyword
https://www.readbyqxmd.com/read/28629100/biomaterials-and-cells-for-cardiac-tissue-engineering-current-choices
#1
REVIEW
Rusha Chaudhuri, Madhumitha Ramachandran, Pearl Moharil, Megha Harumalani, Amit K Jaiswal
The major purpose of cardiac tissue engineering is to engineer cells on scaffolds and use it as a substitute to infarcted cardiac cells. With an ever-increasing risk of cardiac diseases there is an increasing need to have a stable and sustainable approach to cure such ailments. This review provides a comprehensive update on the cell sources and biomaterials essential for cardiac tissue engineering, ensuring their biocompatibility under a variety of conditions. Cells can be obtained from allogenic or autologous sources...
October 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28629085/design-of-a-hybrid-biomaterial-for-tissue-engineering-biopolymer-scaffold-integrated-with-an-autologous-hydrogel-carrying-mesenchymal-stem-cells
#2
Caroline R Weinstein-Oppenheimer, Donald I Brown, Rodrigo Coloma, Patricio Morales, Mauricio Reyna-Jeldes, María J Díaz, Elizabeth Sánchez, Cristian A Acevedo
Biologically active biomaterials as biopolymers and hydrogels have been used in medical applications providing favorable results in tissue engineering. In this research, a wound dressing device was designed by integration of an autologous clot hydrogel carrying mesenchymal stem-cells onto a biopolymeric scaffold. This hybrid biomaterial was tested in-vitro and in-vivo, and used in a human clinical case. The biopolymeric scaffold was made with gelatin, chitosan and hyaluronic acid, using a freeze-drying method...
October 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28629066/glucosamine-modified-polyethylene-glycol-hydrogel-mediated-chondrogenic-differentiation-of-human-mesenchymal-stem-cells
#3
Hang Yao, Jingchen Xue, Qunfang Wang, Renjian Xie, Weichang Li, Sa Liu, Jinglei Cai, Dajiang Qin, Dong-An Wang, Li Ren
Glucosamine (GA) is an important cartilage matrix precursor for the glycosaminoglycan biochemical synthesis, and has positive effects on cartilage regeneration, particularly in osteoarthritis therapy. However, it has not been used as a bioactive group in scaffolds for cartilage repair widely. In this study, we synthesized modified polyethylene glycol (PEG) hydrogel with glucosamine and then encapsulated human bone mesenchymal stem cells (hBMSCs) in the hydrogel to induce the differentiation of hBMSCs into chondrocytes in three-dimensional culture...
October 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28627740/biofabrication-of-soft-tissue-templates-for-engineering-the-bone-ligament-interface
#4
Ella Harris, Yurong Liu, Grainne Cuniffe, David Morrissey, Simon Carroll, Kevin Mulhall, Daniel J Kelly
Regenerating damaged tissue interfaces remains a significant clinical challenge, requiring recapitulation of the structure, composition and function of the native enthesis. In the ligament-to-bone interface this region transitions from ligament to fibrocartilage, to calcified cartilage and then to bone. This gradation in tissue types facilitates the transfer of load between soft and hard structures while minimizing stress concentrations at the interface. Previous attempts to engineer the ligament-bone interface have utilized various scaffold materials with an array of various cell types and/or biological cues...
June 19, 2017: Biotechnology and Bioengineering
https://www.readbyqxmd.com/read/28611002/chondrogenesis-of-human-bone-marrow-mesenchymal-stem-cells-in-3-dimensional-photocrosslinked-hydrogel-constructs-effect-of-cell-seeding-density-and-material-stiffness
#5
Aaron X Sun, Hang Lin, Madalyn R Fritch, He Shen, Pete G Alexander, Michael DeHart, Rocky S Tuan
Three-dimensional hydrogel constructs incorporated with live stem cells that support chondrogenic differentiation and maintenance offer a promising regenerative route towards addressing the limited self-repair capabilities of articular cartilage. In particular, hydrogel scaffolds that augment chondrogenesis and recapitulate the native physical properties of cartilage, such as compressive strength, can potentially be applied in point-of-care procedures. We report here the synthesis of two new materials, [poly-l-lactic acid/polyethylene glycol/poly-l-lactic acid] (PLLA-PEG 1000) and [poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid] (PDLLA-PEG 1000), that are biodegradable, biocompatible (>80% viability post fabrication), and possess high, physiologically relevant mechanical strength (∼1500 to 1800kPa)...
June 10, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28605908/chondroitin-sulfate-based-biomineralizing-surface-hydrogels-for-bone-tissue-engineering
#6
Hwan D Kim, Eunjee A Lee, Young-Hyeon An, Seunghyun L Kim, Seunghun S Lee, Seung Jung Yu, Hae Lin Jang, Ki Tae Nam, Sung Gap Im, Nathaniel S Hwang
Chondroitin sulfate (CS) is the major component of glycosaminoglycan in connective tissue. In this study, we fabricated methacrylated PEGDA/CS-based hydrogels with varying CS concentration (0, 1, 5, and 10%) and investigated them as biomineralizing three-dimensional scaffolds for charged ion binding and depositions. Due to its negative charge from the sulfate group, CS exhibited an osteogenically favorable microenvironment by binding charged ions such as calcium and phosphate. Particularly, ion binding and distribution within negatively charged hydrogel was dependent on CS concentration...
June 22, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28593744/thermosensitive-heparin-poloxamer-hydrogels-enhance-the-effects-of-gdnf-on-neuronal-circuit-remodelling-and-neuroprotection-after-spinal-cord-injury
#7
Ying-Zheng Zhao, Xi Jiang, Qian Lin, He-Lin Xu, Ya-Dong Huang, Cui-Tao Lu, Jun Cai
Traumatic spinal cord injury (SCI) results in paraplegia or quadriplegia, and currently, therapeutic interventions for axonal regeneration after SCI are not clinically available. Animal studies have revealed that glial cell-derived neurotrophic factor (GDNF) plays multiple beneficial roles in neuroprotection, glial scarring remodelling, axon regeneration and remyelination in SCI. However, the poor physicochemical stability of GDNF, as well as its limited ability to cross the blood-spinal cord barrier, hampers the development of GDNF as an effective therapeutic intervention in clinical practice...
June 7, 2017: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/28585970/mesoporous-silica-nanoparticles-in-injectable-hydrogels-factors-influencing-cellular-uptake-and-viability
#8
Bernhard Baumann, Rainer Wittig, Mika Lindén
The incorporation of nanoparticles as drug vectors into 3D scaffolds has attracted a lot of recent interest. In particular, tissue engineering applications would benefit from a spatially and temporally regulated release of biological cues, which act on precursor/stem cells in a three-dimensional growth environment. Injectable cell- and nanoparticle-containing scaffolds are especially interesting in this respect, but require matrix self-assembly and coordinated interactions between cells, matrices, and nanoparticles, which are largely uncharacterized yet...
June 6, 2017: Nanoscale
https://www.readbyqxmd.com/read/28583182/tissue-specific-bioactivity-of-soluble-tendon-derived-and-cartilage-derived-extracellular-matrices-on-adult-mesenchymal-stem-cells
#9
Benjamin B Rothrauff, Guang Yang, Rocky S Tuan
BACKGROUND: Biological scaffolds composed of tissue-derived extracellular matrix (ECM) can promote homologous (i.e., tissue-specific) cell differentiation through preservation of biophysical and biochemical motifs found in native tissues. Solubilized ECMs derived from decellularized tendon and cartilage have recently been promoted as tissue-specific biomaterials, but whether tissue-specific bioactivity is preserved following solubilization is unknown. This study explored the tissue-specific bioactivity of soluble decellularized tendon and cartilage ECMs on human bone marrow-derived mesenchymal stem cells (MSCs) presented across different culture microenvironments, including two-dimensional (2D) tissue culture plastic, aligned electrospun nanofibers, cell pellets, and cell-seeded photocrosslinkable hydrogels...
June 5, 2017: Stem Cell Research & Therapy
https://www.readbyqxmd.com/read/28582717/modulating-the-phenotype-of-host-macrophages-to-enhance-osteogenesis-in-msc-laden-hydrogels-design-of-a-glucomannan-coating-material
#10
Yiming Niu, Qiu Li, Ruiyu Xie, Shang Liu, Ruibing Wang, Panfei Xing, Yuchen Shi, Yitao Wang, Lei Dong, Chunming Wang
The biomaterials-host interaction is a dynamic process in which macrophages play a vital role of regulation. Depending on the biochemical signals they sense, these highly plastic cells can mediate the immune response against the implanted scaffolds and/or exert regenerative potency to varying extent. Designing appropriate 'exterior signals' for scaffolds may exploit the power of endogenous macrophages to aid the regeneration of engineered tissues. To realise this goal, this study devised an injectable, instantaneously-solidifying coating material (acBSP) based on a unique, macrophage-affinitive glucomannan polysaccharide...
September 2017: Biomaterials
https://www.readbyqxmd.com/read/28557533/induced-cell-turnover-a-novel-therapeutic-modality-for-in-situ-tissue-regeneration
#11
Francesco Albert Bosco Cortese, Sebastian Aguiar, Giovanni Santostasi
Induced Cell Turnover (ICT) is a theoretical intervention in which the targeted ablation of damaged, diseased and/or nonfunctional cells is coupled with replacement by partially differentiated induced pluripotent stem cells in a gradual and multi-phasic manner. Tissue-specific ablation can be achieved using pro-apoptotic small molecule cocktails, peptide mimetics, and/or tissue-tropic AAV-delivered suicide genes driven by cell-type specific promoters. Replenishment with new cells can be mediated by systemic administration of cells engineered for homing, robustness, and even enhanced function and disease resistance...
May 30, 2017: Human Gene Therapy
https://www.readbyqxmd.com/read/28537502/suitability-of-different-natural-and-synthetic-biomaterials-for-dental-pulp-tissue-engineering
#12
Kerstin M Galler, Ferdinand Brandl, Susanne Kirchhof, Matthias Widbiller, Andreas Eidt, Wolfgang Buchalla, Achim Goepferich, Gottfried Schmalz
Dental pulp tissue engineering is possible after insertion of pulpal stem cells combined with a scaffold into empty root canals. Commonly used biomaterials are collagen or poly(lactic) acid, which are either difficult to modify or to insert into such a narrow space. New hydrogel scaffolds with bioactive, specifically tailored functions could optimize the conditions to engineer dental pulp. Different synthetic and natural hydrogels were tested for their suitability to engineer dental pulp. Two functionalized modifications of polyethylene glycol were developed in this study and compared to a self-assembling peptide as well as to collagen and fibrin...
May 24, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28537482/programmed-platelet-derived-growth-factor-%C3%AE-%C3%AE-and-bone-morphogenetic-protein-2-delivery-from-a-hybrid-calcium-phosphate-alginate-scaffold
#13
Emily A Bayer, Jahnelle Jordan, Riccardo Gottardi, Morgan Fedorchak, Prashant N Kumta, Steven Little
Bone tissue engineering requires the upregulation of several regenerative stages, including a critical early phase of angiogenesis. Previous studies have suggested that a sequential delivery of PDGF to BMP-2 could promote angiogenic tubule formation when delivered to in vitro co-cultures of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs). However, it was previously unclear that this PDGF to BMP-2 delivery schedule will result in cell migration into the scaffolding system and affect the later expression of bone markers...
May 24, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28532902/adipose-derived-delivery-vehicle-for-encapsulated-adipogenic-factors
#14
Christopher M Mahoney, Arta Kelmindi-Doko, Malik J Snowden, J Peter Rubin, Kacey G Marra
Hydrogels derived from adipose tissue extracellular matrix (AdECM) have shown potential in the ability to generate new adipose tissue in vivo. To further enhance adipogenesis, a composite adipose derived delivery system (CADDS) containing single- and double-walled dexamethasone encapsulated microspheres (SW and DW Dex MS) has been developed. Previously, our laboratory has published the use of Dex MS as an additive to enhance adipogenesis and angiogenesis in adipose tissue grafts. In the current work, AdECM and CADDS are extensively characterized, in addition to conducting in vitro cell culture analysis...
May 19, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28532113/nanofibers-of-human-tropoelastin-inspired-peptides-structural-characterization-and-biological-properties
#15
Valeria Secchi, Stefano Franchi, Marco Fioramonti, Giovanni Polzonetti, Giovanna Iucci, Brigida Bochicchio, Chiara Battocchio
Regenerative medicine is taking great advantage from the use of biomaterials in the treatments of a wide range of diseases and injuries. Among other biomaterials, self-assembling peptides are appealing systems due to their ability to spontaneously form nanostructured hydrogels that can be directly injected into lesions. Indeed, self-assembling peptide scaffolds are expected to behave as biomimetic matrices able to surround cells, to promote specific interactions, and to control and modify cell behavior by mimicking the native environment as well...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28530207/fabrication-of-biomimetic-bone-grafts-with-multi-material-3d-printing
#16
Nicholas Sears, Prachi Dhavalikar, Michael Whitely, Elizabeth Cosgriff-Hernandez
Extrusion deposition is a versatile method for the 3D printing of biomaterials such as hydrogels, ceramics, and suspensions. Recently, a new class of emulsion inks were developed that can be used to create tunable, hierarchically porous materials with a cure-on-dispense method. Propylene fumarate dimethacrylate (PFDMA) was selected to fabricate bone grafts using this technology due to its established biocompatibility, osteoconductivity, and good compressive properties. Scaffolds fabricated from PFDMA emulsion inks displayed compressive modulus and yield strength of approximately 15 and 1 MPa, respectively...
May 22, 2017: Biofabrication
https://www.readbyqxmd.com/read/28530133/efficacy-of-a-self-assembling-peptide-hydrogel-spg-178-gel-for-bone-regeneration-and-three-dimensional-osteogenic-induction-of-dental-pulp-stem-cells
#17
Jun Tsukamoto, Keiko Naruse, Yusuke Nagai, Shuhei Kan, Nobuhisa Nakamura, Masaki Hata, Maiko Omi, Tatsuhide Hayashi, Tatsushi Kawai, Tatsuaki Matsubara
The aim of this study was to assess the efficacy of a self-assembling peptide hydrogel as a scaffold for bone regeneration. We used a neutral and injectable self-assembling peptide hydrogel, SPG-178-Gel. Bone defects (5 mm in diameter) in rat calvarial bones were filled with a mixture of alpha-modified Eagle's medium and the peptide hydrogel. Three weeks after surgery, soft X-ray and micro-computed tomography (micro-CT) images of the gel-treated bones showed new bone formations in the periphery and in central areas of the defects...
May 20, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28526887/increased-stem-cells-delivered-using-a-silk-gel-scaffold-complex-for-enhanced-bone-regeneration
#18
Xun Ding, Guangzheng Yang, Wenjie Zhang, Guanglong Li, Shuxian Lin, David L Kaplan, Xinquan Jiang
The low in vivo survival rate of scaffold-seeded cells is still a challenge in stem cell-based bone regeneration. This study seeks to use a silk hydrogel to deliver more stem cells into a bone defect area and prolong the viability of these cells after implantation. Rat bone marrow stem cells were mingled with silk hydrogels at the concentrations of 1.0 × 10(5)/mL, 1.0 × 10(6)/mL and 1.0 × 10(7)/mL before gelation, added dropwise to a silk scaffold and applied to a rat calvarial defect. A cell tracing experiment was included to observe the preservation of cell viability and function...
May 19, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28514893/cytocompatible-polyion-complex-gel-of-poly-pro-hyp-gly-for-simultaneous-rat-bone-marrow-stromal-cell-encapsulation
#19
Farah Nurlidar, Mime Kobayashi, Kayo Terada, Tsuyoshi Ando, Masao Tanihara
Polyion complex (PIC) gel of poly(Pro-Hyp-Gly) was successfully fabricated by simply mixing polyanion and polycation derivatives of poly(Pro-Hyp-Gly), a collagen-like polypeptide. The polyanion, succinylated poly(Pro-Hyp-Gly), and the polycation, arginylated poly(Pro-Hyp-Gly), contain carboxy (pKa = 5.2) and guanidinium (pKa = 12.4) groups, respectively. Mixing the polyanion and the polycation at physiological pH (pH = 7.4) resulted in PIC gel. The hydrogel formation was optimum at an equimolar ratio of carboxy to guanidinium groups, suggesting that ionic interaction is the main determinant for the hydrogel formation...
May 28, 2017: Journal of Biomaterials Science. Polymer Edition
https://www.readbyqxmd.com/read/28501713/an-in-situ-photocrosslinkable-platelet-rich-plasma-complexed-hydrogel-glue-with-growth-factor-controlled-release-ability-to-promote-cartilage-defect-repair
#20
Xiaolin Liu, Yunlong Yang, Xin Niu, Qiuning Lin, Bizeng Zhao, Yang Wang, Linyong Zhu
The repair of articular cartilage injury is a great clinical challenge. Platelet-rich plasma (PRP) has attracted much attention for the repair of articular cartilage injury, because it contains various growth factors that are beneficial for wound repair. However, current administration methods of PRP face many shortcomings, such as unstable biological fixation and burst release of growth factors, all of which will bring troubles to its application in the repair of articular cartilage and compromise its therapeutic efficacy...
May 10, 2017: Acta Biomaterialia
keyword
keyword
14177
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"