Read by QxMD icon Read

Neural stem cell

Bowen Niu, Bo Li, Chongyang Wu, Jiang Wu, Yuan Yan, Rui Shang, Chunling Bai, Guangpeng Li, Jinlian Hua
Melatonin has been reported to be an important endogenous hormone for regulating neurogenesis, immunityand the biological clock. Recently, the effects of melatonin on neural stem cells (NSCs), mesenchymal stem cells(MSCs), and induced pluripotent stem cells(iPSCs) have been reported; however, the effects of melatonin on spermatogonia stem cells (SSCs) are not clear. Here, 1μM and 1nM melatonin was added to medium when goat SSCs were cultured in vitro, the results showed that melatonin could increase the formation and size of SSC colonies...
October 18, 2016: Oncotarget
Julien Muffat, Yun Li, Rudolf Jaenisch
In vitro differentiation of human pluripotent stem cells provides a systematic platform to investigate the physiological development and function of the human nervous system, as well as the etiology and consequence when these processes go awry. Recent development in three-dimensional (3D) organotypic culture systems allows modeling of the complex structure formation of the human CNS, and the intricate interactions between various resident neuronal and glial cell types. Combined with an ever-expanding genome editing and regulation toolkit such as CRISPR/Cas9, it is now a possibility to study human neurological disease in the relevant molecular, cellular and anatomical context...
October 18, 2016: Current Opinion in Cell Biology
Gunaseelan Narayanan, Yuan Hong Yu, Muly Tham, Hui Theng Gan, Srinivas Ramasamy, Shvetha Sankaran, Srivats Hariharan, Sohail Ahmed
Neural stem cells (NSCs) have the ability to self-renew and generate the three major neural lineages - astrocytes, neurons and oligodendrocytes. NSCs and neural progenitors (NPs) are commonly cultured in vitro as neurospheres. This protocol describes in detail how to determine the NSC frequency in a given cell population under clonal conditions. The protocol begins with the seeding of the cells at a density that allows for the generation of clonal neurospheres. The neurospheres are then transferred to chambered coverslips and differentiated under clonal conditions in conditioned medium, which maximizes the differentiation potential of the neurospheres...
October 4, 2016: Journal of Visualized Experiments: JoVE
Richard J McMurtrey
Biomaterials are becoming an essential tool in the study and application of stem cell research. Various types of biomaterials enable three-dimensional culture of stem cells, and, more recently, also enable high-resolution patterning and organization of multicellular architectures. Biomaterials also hold potential to provide many additional advantages over cell transplants alone in regenerative medicine. This article describes novel designs for functionalized biomaterial constructs that guide tissue development to targeted regional identities and structures...
January 2016: Journal of Tissue Engineering
R Gajendra Reddy, Lenin Veeraval, Swati Maitra, Marylène Chollet-Krugler, Sophie Tomasi, Françoise Lohézic-Le Dévéhat, Joël Boustie, Sumana Chakravarty
BACKGROUND: Natural products from lichens are widely investigated for their biological properties, yet their potential as central nervous system (CNS) therapeutic agents is less explored. PURPOSE: The present study investigated the neuroactive properties of selected lichen compounds (atranorin, perlatolic acid, physodic acid and usnic acid), for their neurotrophic, neurogenic and acetylcholine esterase (AChE) activities. METHODS: Neurotrophic activity (neurite outgrowth) was determined using murine neuroblastoma Neuro2A cells...
November 15, 2016: Phytomedicine: International Journal of Phytotherapy and Phytopharmacology
Uday B Maachani, Uma Shankavaram, Tamalee Kramp, Philip J Tofilon, Kevin Camphausen, Anita T Tandle
Glioblastoma multiforme (GBM) continues to be the most frequently diagnosed and lethal primary brain tumor. Adjuvant chemo-radiotherapy remains the standard of care following surgical resection. In this study, using reverse phase protein arrays (RPPAs), we assessed the biological effects of radiation on signaling pathways to identify potential radiosensitizing molecular targets. We identified subsets of proteins with clearly concordant/discordant behavior between irradiated and non-irradiated GBM cells in vitro and in vivo...
October 14, 2016: Oncotarget
Rodrigo Lopes de Lima, Rosenilde Carvalho de Holanda Afonso, Vivaldo Moura Neto, Ana Maria Bolognese, Marcos Fabio Henriques Dos Santos, Margareth Maria Gomes de Souza
OBJECTIVE: This study was conducted to identify and characterize dental follicle stem cells (DFSCs) by analyzing expression of embryonic, mesenchymal and neural stem cells surface markers. Design Dental follicle cells (DFCs) were evaluated by immunocytochemistry using embryonic stem cells markers (OCT4 and SOX2), mesenchmal stem cells (MSCs) markers (Notch1, active Notch1, STRO, CD44, HLA-ABC, CD90), neural stem cells markers (Nestin and β-III-tubulin), neural crest stem cells (NCSCs) markers (p75 and HNK1) and a glial cells marker (GFAP)...
October 8, 2016: Archives of Oral Biology
Zhong Liu, Cheng Zhang, Alireza Khodadadi-Jamayran, Lam Dang, Xiaosi Han, Kitai Kim, Hu Li, Rui Zhao
Neural stem cells (NSCs) have the capacity to differentiate into neurons, astrocytes, and oligodendrocytes, and therefore represent a promising donor tissue source for treating neurodegenerative diseases and repairing injuries of the nervous system. However, it remains unclear how canonical microRNAs (miRNAs), the subset of miRNAs requiring the Drosha-Dgcr8 microprocessor and the type III RNase Dicer for biogenesis, regulate NSCs. In this study, we established and characterized <i>Dgcr8</i><sup>-/-</sup> NSCs from conditionally <i>Dgcr8</i>-disrupted mouse embryonic brain...
October 20, 2016: Stem Cells and Development
Qingxi Zhang, Wanling Chen, Sheng Tan, Tongxiang Lin
Parkinson's disease (PD) is the second most frequent neurodegenerative disease after Alzheimer's disease, which is characterized by low level of dopamine expressing in the striatum and deteriorated dopaminergic neurons (DAn) in Substantia nigra pars compacta (SNpc). Generation of PD-derived DAn including differentiation of human embryonic stem cell (hESC), human neural stem cell (hNSC), human induced pluripotent stem cell (hiPSC) and directly reprogramming provide an ideal tool to model PD, which created the possibilities of mimicking key essential pathological processes charactering single cell changes in vitro...
October 20, 2016: Human Gene Therapy
Prabesh Bhattarai, Alvin Kuriakose Thomas, Mehmet Ilyas Cosacak, Christos Papadimitriou, Violeta Mashkaryan, Cynthia Froc, Susanne Reinhardt, Thomas Kurth, Andreas Dahl, Yixin Zhang, Caghan Kizil
Human brains are prone to neurodegeneration, given that endogenous neural stem/progenitor cells (NSPCs) fail to support neurogenesis. To investigate the molecular programs potentially mediating neurodegeneration-induced NSPC plasticity in regenerating organisms, we generated an Amyloid-β42 (Aβ42)-dependent neurotoxic model in adult zebrafish brain through cerebroventricular microinjection of cell-penetrating Aβ42 derivatives. Aβ42 deposits in neurons and causes phenotypes reminiscent of amyloid pathophysiology: apoptosis, microglial activation, synaptic degeneration, and learning deficits...
October 18, 2016: Cell Reports
Guang Yang, Gonzalo I Cancino, Siraj K Zahr, Axel Guskjolen, Anastassia Voronova, Denis Gallagher, Paul W Frankland, David R Kaplan, Freda D Miller
Maternal diabetes is known to adversely influence brain development in offspring. Here, we provide evidence that this involves the circulating metabolite methylglyoxal, which is increased in diabetes, and its detoxifying enzyme, glyoxalase 1 (Glo1), which when mutated is associated with neurodevelopmental disorders. Specifically, when Glo1 levels were decreased in embryonic mouse cortical neural precursor cells (NPCs), this led to premature neurogenesis and NPC depletion embryonically and long-term alterations in cortical neurons postnatally...
October 18, 2016: Cell Reports
Qi-Gang Zhou, Daehoon Lee, Eun Jeoung Ro, Hoonkyo Suh
Hippocampus-dependent cognitive and emotional function appears to be regionally dissociated along the dorsoventral (DV) axis of the hippocampus. Recent observations that adult hippocampal neurogenesis plays a critical role in both cognition and emotion raised an interesting question whether adult neurogenesis within specific subregions of the hippocampus contributes to these distinct functions. We examined the regional-specific and cell type-specific effects of fluoxetine, which requires adult hippocampal neurogenesis to function as an antidepressant, on the proliferation of hippocampal neural stem cells (NSCs)...
October 19, 2016: Scientific Reports
Claudia Compagnucci, Emanuela Piermarini, Antonella Sferra, Rossella Borghi, Alessia Niceforo, Stefania Petrini, Fiorella Piemonte, Enrico Bertini
Patient-derived induced pluripotent stem cells (iPSCs) provide a novel tool to investigate the pathophysiology of poorly known diseases, in particular those affecting the nervous system, which has been difficult to study for its lack of accessibility. In this emerging and promising field, recent iPSCs studies are mostly used as "proof-of-principle" experiments that are confirmatory of previous findings obtained from animal models and postmortem human studies; its promise as a discovery tool is just beginning to be realized...
October 15, 2016: Molecular and Cellular Neurosciences
Cláudia C Miranda, Tiago G Fernandes, M Margarida Diogo, Joaquim M S Cabral
The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work, we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21...
October 18, 2016: Biotechnology Journal
Katya Zelentsova, Ziv Talmi, Ghada Abboud-Jarrous, Tamar Sapir, Tal Capucha, Maria Nassar, Tal Burstyn-Cohen
Neurons are continuously produced in brains of adult mammalian organisms throughout life - a process tightly regulated to ensure a balanced homeostasis. In the adult brain, quiescent Neural Stem Cells (NSCs) residing in distinct niches engage in proliferation, to self-renew and to give rise to differentiated neurons and astrocytes. The mechanisms governing the intricate regulation of NSC quiescence and neuronal differentiation are not completely understood. Here, we report the expression of Protein S (PROS1) in adult NSCs, and show that genetic ablation of Pros1 in neural progenitors increased hippocampal NSC proliferation by 47%...
October 18, 2016: Stem Cells
Y-Q Li, Zw-C Cheng, Sk-W Liu, I Aubert, C S Wong
Inhibition of hippocampal neurogenesis is implicated in neurocognitive dysfunction after cranial irradiation for brain tumors. How irradiation results in impaired neuronal development remains poorly understood. The Trp53 (p53) gene is known to regulate cellular DNA damage response after irradiation. Whether it has a role in disruption of late neuronal development remains unknown. Here we characterized the effects of p53 on neuronal development in adult mouse hippocampus after irradiation. Different bromodeoxyuridine incorporation paradigms and a transplantation study were used for cell fate mapping...
2016: Cell Death Discovery
Christina R Tyler, Matthew T Labrecque, Elizabeth R Solomon, Xun Guo, Andrea M Allan
Exposure to arsenic, a common environmental toxin found in drinking water, leads to a host of neurological pathologies. We have previously demonstrated that developmental exposure to a low level of arsenic (50ppb) alters epigenetic processes that underlie deficits in adult hippocampal neurogenesis leading to aberrant behavior. It is unclear if arsenic impacts the programming and regulation of embryonic neurogenesis during development when exposure occurs. The master negative regulator of neural-lineage, REST/NRSF, controls the precise timing of fate specification and differentiation of neural stem cells (NSCs)...
October 14, 2016: Neurotoxicology and Teratology
Ji-Huang Li, Zi-Xian Chen, Xiao-Guang Zhang, Yan Li, Wen-Ting Yang, Xia-Wei Zheng, Shuang Chen, Lin Lu, Yong Gu, Guo-Qing Zheng
BACKGROUND: Chinese herbal medicine (CHM) has been used to treat stroke for thousands of years. The objective of the study is to assess the current evidence for bioactive components of CHM as neurogenesis agent in animal models of ischemic stroke. METHODS: We searched PubMed, China National Knowledge Infrastructure, WanFang Database, and VIP Database for Chinese Technical Periodicals published from the inception up to November 2015. The primary measured outcome was one of neurogenesis biomarker, including Bromodeoxyuridine (BrdU), Nestin, doublecortin (DCX), polysialylated form of the neural cell adhesion molecule (PSA-NCAM), neuronal nuclear antigen (NeuN), and glial fibrillary acidic protein (GFAP)...
October 2016: Medicine (Baltimore)
Qian Jiao, Li Wang, Zhichao Zhang, Yuanyuan Wang, Hanqi Yan, Wen Ma, Weilin Jin, Haixia Lu, Yong Liu
Different SLIT-ROBO Rho GTPase-activating proteins (srGAPs) have different levels of expression and diverse functions during neural development. Although srGAP2 is expressed in developmental brain tissue, little is known about its influence on cellular development of the nervous system. In the current study, dynamic expression of endogenous srGAP2 during neural stem cell/progenitor cell (NSC/NPC) differentiation in vitro was investigated in order to elucidate the association between the dynamic expression of srGAP2 and neural development...
October 4, 2016: Molecular Medicine Reports
Muhammad Sallouh, Marvin Jarocki, Omar Sallouh, Patrick Degen, Andreas Faissner, Ralf Weberskirch
This article reports the behavior of embryonic neural stem cells on a hydrogel that combines cationic, non-specific cell adhesion motifs with glycine-arginine-glycine-aspartic acid-serine-phenylalanine (GRGDSF)-peptides as specific cell adhesion moieties. Therefore, three hydrogels are prepared by free radical polymerization that contains either a GRGDSF-peptide residue (P1), amino ethylmethacrylate as a cationic residue (P2), or a combination of both motifs (P3). For each gel, cross linker concentrations of 8 mol% is used to have a comparable gel stiffness of 8-9 kPa...
October 17, 2016: Macromolecular Bioscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"