keyword
MENU ▼
Read by QxMD icon Read
search

Device

keyword
https://www.readbyqxmd.com/read/28814060/a-soft-wearable-robot-for-the-shoulder-design-characterization-and-preliminary-testing
#1
Ciaran T O'Neill, Nathan S Phipps, Leonardo Cappello, Sabrina Paganoni, Conor J Walsh
In this paper, we present a soft wearable robot for the shoulder which has the potential to assist individuals suffering from a range of neuromuscular conditions affecting the shoulder to perform activities of daily living. This wearable robot combines two types of soft textile pneumatic actuators which were custom developed for this particular application to support the upper arm through shoulder abduction and horizontal flexion/extension. The advantage of a textile-based approach is that the robot can be lightweight, low-profile, comfortable and non-restrictive to the wearer, and easy to don like an item of clothing...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814058/towards-an-ankle-neuroprosthesis-for-hybrid-robotics-concepts-and-current-sources-for-functional-electrical-stimulation
#2
S Casco, I Fuster, R Galeano, J C Moreno, J L Pons, F Brunetti
Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814056/design-of-a-lightweight-tethered-torque-controlled-knee-exoskeleton
#3
Kirby Ann Witte, Andreas M Fatschel, Steven H Collins
Lower-limb exoskeletons show promise for improving gait rehabilitation for those with chronic gait abnormalities due to injury, stroke or other illness. We designed and built a tethered knee exoskeleton with a strong lightweight frame and comfortable, four-point contact with the leg. The device is structurally compliant in select directions, instrumented to measure joint angle and applied torque, and is lightweight (0.76 kg). The exoskeleton is actuated by two off-board motors. Closed loop torque control is achieved using classical proportional feedback control with damping injection in conjunction with iterative learning...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814055/twiice-a-lightweight-lower-limb-exoskeleton-for-complete-paraplegics
#4
Tristan Vouga, Romain Baud, Jemina Fasola, Mohamed Bouri, Hannes Bleuler
This paper introduces TWIICE, a lower-limb exoskeleton that enables people suffering from complete paraplegia to stand up and walk again. TWIICE provides complete mobilization of the lower-limbs, which is a first step toward enabling the user to regain independence in activities of the daily living. The tasks it can perform include level and inclined walking (up to 20° slope), stairs ascent and descent, sitting on a seat, and standing up. Participation in the world's first Cybathlon (Zurich, 2016) demonstrated good performance at these demanding tasks...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814052/grasp-specific-and-user-friendly-interface-design-for-myoelectric-hand-prostheses
#5
Alireza Mohammadi, Jim Lavranos, Rob Howe, Peter Choong, Denny Oetomo
This paper presents the design and characterisation of a hand prosthesis and its user interface, focusing on performing the most commonly used grasps in activities of daily living (ADLs). Since the operation of a multi-articulated powered hand prosthesis is difficult to learn and master, there is a significant rate of abandonment by amputees in preference for simpler devices. In choosing so, amputees chose to live with fewer features in their prosthesis that would more reliably perform the basic operations...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814050/segmental-contributions-to-sagittal-plane-whole-body-angular-momentum-when-using-powered-compared-to-passive-ankle-foot-prostheses-on-ramps
#6
Nathaniel T Pickle, Anne K Silverman, Jason M Wilken, Nicholas P Fey
Understanding the effects of an assistive device on dynamic balance is crucial, particularly for robotic leg prostheses. Analyses of dynamic balance commonly evaluate the range of whole-body angular momentum (H). However, the contributions of individual body segments to overall H throughout gait may yield futher insights, specifically for people with transtibial amputation using powered prostheses. We evaluated segment contributions to H using Statistical Parametric Mapping to assess the effects of prosthesis type (powered vs passive) and ramp angle on segmental coordination...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814048/a-mechanism-for-elbow-exoskeleton-for-customised-training
#7
Soumya K Manna, Venketesh N Dubey
It is well proven that repetitive extensive training consisting of active and passive therapy is effective for patients suffering from neuromuscular deficits. The level of difficulty in rehabilitation should be increased with time to improve the neurological muscle functions. A portable elbow exoskeleton has been designed that will meet these requirements and potentially offers superior outcomes than human-assisted training. The proposed exoskeleton can provide both active and passive rehabilitation in a single structure without changing its configuration...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814047/a-simple-tool-to-measure-spasticity-in-spinal-cord-injury-subjects
#8
Arash Arami, Nevio L Tagliamonte, Federica Tamburella, Hsieng-Yung Huang, Marco Molinari, Etienne Burdet
This work presents a wearable device and the algorithms for quantitative modelling of joint spasticity and its application in a pilot group of subjects with different levels of spinal cord injury. The device comprises light-weight instrumented handles to measure the interaction force between the subject and the physical therapist performing the tests, EMG sensors and inertial measurement units to measure muscle activity and joint kinematics. Experimental tests included the passive movement of different body segments, where the spasticity was expected, at different velocities...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814044/a-survey-of-stakeholder-perspectives-on-a-proposed-combined-exoskeleton-wheelchair-technology
#9
Tim Bhatnagar, W Ben Mortensen, Johanne Mattie, Jamie Wolff, Claire Parker, Jaimie Borisoff
BACKGROUND: Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. In particular, challenges related to travelling longer distances and transitioning between using a wheelchair and exoskeleton walking may present significant deterrents to regular exoskeleton use. In an effort to remove these barriers, a combined exoskeleton-wheelchair concept ('COMBO') has been proposed, which aims to achieve the benefits of both these mobility technologies...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814043/design-of-a-wearable-interface-for-lightweight-robotic-arm-for-people-with-mobility-impairments
#10
Tommaso Lisini Baldi, Giovanni Spagnoletti, Mihai Dragusanu, Domenico Prattichizzo
Many common activities of daily living like open a door or fill a glass of water, which most of us take for granted, could be an insuperable problem for people who have limited mobility or impairments. For years the unique alternative to overcame this limitation was asking for human help. Nowadays thanks to recent studies and technology developments, having an assistive devices to compensate the loss of mobility is becoming a real opportunity. Off-the-shelf assistive robotic manipulators have the capability to improve the life of people with motor impairments...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814042/portable-haptic-device-for-lower-limb-amputee-gait-feedback-assessing-static-and-dynamic-perceptibility
#11
M A B Husman, H F Maqbool, M I Awad, A A Dehghani-Sanij
Loss of joints and severed sensory pathway cause reduced mobility capabilities in lower limb amputees. Although prosthetic devices attempt to restore normal mobility functions, lack of awareness and control of limb placement increase the risk of falling and causing amputee to have high level of visual dependency. Haptic feedback can serve as a cue for gait events during ambulation thus providing sense of awareness of the limb position. This paper presents a wireless wearable skin stretch haptic device to be fitted around the thigh region...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814041/assessing-bradykinesia-in-parkinson-s-disease-using-gyroscope-signals
#12
S Summa, J Tosi, F Taffoni, L Di Biase, M Marano, A Cascio Rizzo, M Tombini, G Di Pino, D Formica
Parkinson's disease (PD) is a neurodegenerative brain disorder that slowly brings on the dopaminergic neurons death. The depletion of the dopaminergic signal causes the onset of motor symptoms such as tremor, bradykinesia and rigidity. Usually, neurologists regularly monitor motor symptoms and motor fluctuations using the MDS-UPDRS part III clinical scale. Nevertheless, to have a more objective and quantitative evaluation, it is possible to assess the cardinal motor symptoms of PD using wearable sensors and portable robotic devices...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814037/design-of-a-power-asymmetric-actuator-for-a-transtibial-prosthesis
#13
Harrison L Bartlett, Brian E Lawson, Michael Goldfarb
This paper presents the design and characterization of a power-asymmetric actuator for a transtibial prosthesis. The device is designed to provide the combination of: 1) joint locking, 2) high power dissipation, and 3) low power generation. This actuator functionality allows for a prosthesis to be designed with minimal mass and power consumption relative to a fully-powered robotic prosthesis while maintaining much of the functionality necessary for activities of daily living. The actuator achieves these design characteristics while maintaining a small form factor by leveraging a combination of electromechanical and hydraulic components...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814035/decoding-of-individual-finger-movements-from-surface-emg-signals-using-vector-autoregressive-hierarchical-hidden-markov-models-varhhmm
#14
Nebojsa Malesevic, Dimitrije Markovic, Gunter Kanitz, Marco Controzzi, Christian Cipriani, Christian Antfolk
In this paper we present a novel method for predicting individual fingers movements from surface electromyography (EMG). The method is intended for real-time dexterous control of a multifunctional prosthetic hand device. The EMG data was recorded using 16 single-ended channels positioned on the forearm of healthy participants. Synchronously with the EMG recording, the subjects performed consecutive finger movements based on the visual cues. Our algorithm could be described in following steps: extracting mean average value (MAV) of the EMG to be used as the feature for classification, piece-wise linear modeling of EMG feature dynamics, implementation of hierarchical hidden Markov models (HHMM) to capture transitions between linear models, and implementation of Bayesian inference as the classifier...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814032/studying-the-implementation-of-iterative-impedance-control-for-assistive-hand-rehabilitation-using-an-exoskeleton
#15
T Martineau, R Vaidyanathan
A positive training synergy can be obtained when two individuals attempt to learn the same motor task while mechanically coupled to one another. In this paper, we have studied how mimicking this interaction through impedance control can be exploited to improve assistance delivered by hand exoskeleton devices during rehabilitation. In this context, the machine and user take complementary roles akin to two coupled individuals. We present the derivation of a dynamic model of the human hand for the purpose of controller development for new hand exoskeleton platforms...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814027/challenges-in-using-compliant-ligaments-for-position-estimation-within-robotic-joints
#16
Felix Russell, Lei Gao, Peter Ellison, Ravi Vaidyanathan
The mechanical advantages of bio-inspired condylar robotic knee joints for use in prosthetics or rehabilitation has been argued extensively in literature. A common limitation of these designs is the difficulty of estimating joint angle and therefore accurately controlling the joint. Furthermore, the potential role of ligament-like structures in robotic knees is not very well established. In this work, we investigate the role of compliant stretch sensing ligaments and their integration into a condylar robotic knee...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814025/learning-from-demonstration-teaching-a-myoelectric-prosthesis-with-an-intact-limb-via-reinforcement-learning
#17
Gautham Vasan, Patrick M Pilarski
Prosthetic arms should restore and extend the capabilities of someone with an amputation. They should move naturally and be able to perform elegant, coordinated movements that approximate those of a biological arm. Despite these objectives, the control of modern-day prostheses is often nonintuitive and taxing. Existing devices and control approaches do not yet give users the ability to effect highly synergistic movements during their daily-life control of a prosthetic device. As a step towards improving the control of prosthetic arms and hands, we introduce an intuitive approach to training a prosthetic control system that helps a user achieve hard-to-engineer control behaviours...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814023/representing-high-dimensional-data-to-intelligent-prostheses-and-other-wearable-assistive-robots-a-first-comparison-of-tile-coding-and-selective-kanerva-coding
#18
Jaden B Travnik, Patrick M Pilarski
Prosthetic devices have advanced in their capabilities and in the number and type of sensors included in their design. As the space of sensorimotor data available to a conventional or machine learning prosthetic control system increases in dimensionality and complexity, it becomes increasingly important that this data be represented in a useful and computationally efficient way. Well structured sensory data allows prosthetic control systems to make informed, appropriate control decisions. In this study, we explore the impact that increased sensorimotor information has on current machine learning prosthetic control approaches...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814021/simultaneous-estimation-of-human-and-exoskeleton-motion-a-simplified-protocol
#19
M T Alvarez, D Torricelli, A J Del-Ama, D Pinto, J Gonzalez-Vargas, J C Moreno, A Gil-Agudo, J L Pons
Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814019/stiffness-control-of-a-nylon-twisted-coiled-actuator-for-use-in-mechatronic-rehabilitation-devices
#20
Brandon P R Edmonds, Ana Luisa Trejos
Mechatronic rehabilitation devices, especially wearables, have been researched extensively and proven to be promising additions to physical therapy, but most designs utilize traditional actuators providing unnatural, robot-like movements. Therefore, many researchers have focused on the development of actuators that mimic biological properties to provide patients with improved results, safety, and comfort. Recently, a twisted-coiled actuator (TCA) made from nylon thread has been found to possess many of these important properties when heated, such as variable stiffness, flexibility, and high power density...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
keyword
keyword
1364
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"