keyword
MENU ▼
Read by QxMD icon Read
search

Nonsense mediated mrna decay

keyword
https://www.readbyqxmd.com/read/29348139/dissecting-the-functions-of-smg5-smg7-and-pnrc2-in-nonsense-mediated-mrna-decay-of-human-cells
#1
Pamela Nicholson, Asimina Gkratsou, Christoph Josi, Martino Colombo, Oliver Mühlemann
The term "nonsense-mediated mRNA decay" (NMD) originally described the degradation of mRNAs with premature translation-termination codons (PTCs), but its meaning has recently been extended to be a translation-dependent post-transcriptional regulator of gene expression affecting 3-10 % of all mRNAs. The degradation of NMD target mRNAs involves both exonucleolytic and endonucleolytic pathways in mammalian cells. While the latter is mediated by the endonuclease SMG6, the former pathway has been reported to require a complex of SMG5-SMG7 or SMG5-PNRC2 binding to UPF1...
January 18, 2018: RNA
https://www.readbyqxmd.com/read/29344651/identification-of-genes-and-pathways-in-the-synovia-of-women-with-osteoarthritis-by-bioinformatics-analysis
#2
Bobin Mi, Guohui Liu, Wu Zhou, Huijuan Lv, Yi Liu, Jing Liu
Osteoarthritis (OA) has a high prevalence in female patients and sex may be a key factor affecting the progression of OA. The aim of the present study was to identify genetic signatures in the synovial membranes of female patients with OA and to elucidate the potential associated molecular mechanisms. The gene expression profiles of the GSE55457 and GSE55584 datasets were obtained from the Gene Expression Omnibus database. Data of two synovial membranes from normal female individuals (GSM1337306 and GSM1337310) and two synovial membranes from female patients affected by OA (GSM1337327 and GSM1337330) were obtained from the dataset GSE55457, and those of three synovial membranes from female patients affected by OA (GSM1339628, GSM1339629 and GSM1339632) were obtained from the dataset GSE55584...
January 15, 2018: Molecular Medicine Reports
https://www.readbyqxmd.com/read/29334995/antisense-suppression-of-the-nonsense-mediated-decay-factor-upf3b-as-a-potential-treatment-for-diseases-caused-by-nonsense-mutations
#3
Lulu Huang, Audrey Low, Sagar S Damle, Melissa M Keenan, Steven Kuntz, Susan F Murray, Brett P Monia, Shuling Guo
BACKGROUND: About 11% of all human genetic diseases are caused by nonsense mutations that generate premature translation termination codons (PTCs) in messenger RNAs (mRNA). PTCs not only lead to the production of truncated proteins, but also often result in  decreased mRNA abundance due to  nonsense-mediated mRNA decay (NMD). Although pharmacological inhibition of NMD could be an attractive therapeutic approach for the treatment of diseases caused by nonsense mutations, NMD also regulates the expression of 10-20% of the normal transcriptome...
January 15, 2018: Genome Biology
https://www.readbyqxmd.com/read/29309033/nonsense-mrna-suppression-via-nonstop-decay
#4
Joshua A Arribere, Andrew Z Fire
Nonsense-mediated mRNA decay is the process by which mRNAs bearing premature stop codons are recognized and cleared from the cell. While considerable information has accumulated regarding recognition of the premature stop codon, less is known about the ensuing mRNA suppression. During the characterization of a second, distinct translational surveillance pathway (nonstop mRNA decay), we trapped intermediates in nonsense mRNA degradation. We present data in support of a model wherein nonsense-mediated decay funnels into the nonstop decay pathway in C...
January 8, 2018: ELife
https://www.readbyqxmd.com/read/29282598/upf-proteins-highly-conserved-factors-involved-in-nonsense-mrna-mediated-decay
#5
REVIEW
Puneet Gupta, Yan-Ruide Li
Over 10% of genetic diseases are caused by mutations that introduce a premature termination codon in protein-coding mRNA. Nonsense-mediated mRNA decay (NMD) is an essential cellular pathway that degrades these mRNAs to prevent the accumulation of harmful partial protein products. NMD machinery is also increasingly appreciated to play a role in other essential cellular functions, including telomere homeostasis and the regulation of normal mRNA turnover, and is misregulated in numerous cancers. Hence, understanding and designing therapeutics targeting NMD is an important goal in biomedical science...
December 27, 2017: Molecular Biology Reports
https://www.readbyqxmd.com/read/29247835/amlexanox-provides-a-potential-therapy-for-nonsense-mutations-in-the-lysosomal-storage-disorder-aspartylglucosaminuria
#6
Antje Banning, Manuel Schiff, Ritva Tikkanen
Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by mutations in the gene for aspartylglucosaminidase (AGA). This enzyme participates in glycoprotein degradation in lysosomes. AGU results in progressive mental retardation, and no curative therapy is currently available. We have here characterized the consequences of AGA gene mutations in a compound heterozygous patient who exhibits a missense mutation producing a Ser72Pro substitution in one allele, and a nonsense mutation Trp168X in the other...
December 13, 2017: Biochimica et Biophysica Acta
https://www.readbyqxmd.com/read/29236262/studying-nonsense-mediated-mrna-decay-in-mammalian-cells-using-a-multicolored-bioluminescence-based-reporter-system
#7
Andrew Nickless, Zhongsheng You
The nonsense-mediated mRNA decay (NMD) pathway degrades aberrant transcripts containing premature translation termination codons (PTCs) and also regulates the levels of many normal mRNAs containing NMD-inducing features. The activity of this pathway varies considerably in different cell types and can change in response to developmental and environmental cues. Modulating NMD activity represents a potential therapeutic avenue for certain genetic disorders and cancers. Simple reporter systems capable of faithfully assessing NMD activity in mammalian cells greatly facilitate both basic and translational research on NMD...
2018: Methods in Molecular Biology
https://www.readbyqxmd.com/read/29236261/reactivation-assay-to-identify-direct-targets-of-the-nonsense-mediated-mrna-decay-pathway-in-drosophila
#8
Jonathan O Nelson, Mark M Metzstein
Transcriptome analysis provides a snapshot of cellular gene expression and is used to determine how cells and organisms respond to genetic or environmental changes. Identifying the transcripts whose expression levels are regulated directly by the manipulation being examined from those whose expression changes as a secondary cause from the primary changes requires additional analyses. Here we present a technique used to distinguish direct targets of the nonsense-mediated mRNA decay (NMD) pathway in Drosophila from secondary gene expression effects caused by loss of this pathway...
2018: Methods in Molecular Biology
https://www.readbyqxmd.com/read/29236260/generation-of-cell-lines-stably-expressing-a-fluorescent-reporter-of-nonsense-mediated-mrna-decay-activity
#9
Nadezhda M Markina, Anton P Pereverzev, Dmitry B Staroverov, Konstantin A Lukyanov, Nadya G Gurskaya
Nonsense-mediated mRNA decay (NMD) is a mechanism of mRNA surveillance ubiquitous among eukaryotes. Importantly, NMD not only removes aberrant transcripts with premature stop codons, but also regulates expression of many normal genes. A recently introduced dual-color fluorescent protein-based reporter enables analysis of NMD activity in live cells. In this chapter we describe the method to generate stable transgenic cell lines expressing the splicing-dependent NMD reporter using consecutive steps of lentivirus transduction and Tol2 transposition...
2018: Methods in Molecular Biology
https://www.readbyqxmd.com/read/29236259/identifying-cellular-nonsense-mediated-mrna-decay-nmd-targets-immunoprecipitation-of-phosphorylated-upf1-followed-by-rna-sequencing-p-upf1-rip-seq
#10
Tatsuaki Kurosaki, Mainul Hoque, Lynne E Maquat
Recent progress in the technology of transcriptome-wide high-throughput sequencing has revealed that nonsense-mediated mRNA decay (NMD) targets ~10% of physiologic transcripts for the purpose of tuning gene expression in response to various environmental conditions. Regardless of the eukaryote studied, NMD requires the ATP-dependent RNA helicase upframeshift 1 (UPF1). It was initially thought that cellular NMD targets could be defined by their binding to steady-state UPF1, which is largely hypophosphorylated...
2018: Methods in Molecular Biology
https://www.readbyqxmd.com/read/29236258/using-tet-off-cells-and-rnai-knockdown-to-assay-mrna-decay
#11
Thomas D Baird, J Robert Hogg
Cellular mRNA levels are determined by the competing forces of transcription and decay. A wide array of cellular mRNA decay pathways carry out RNA turnover either on a constitutive basis or in response to changing cellular conditions. Here, we outline a method to investigate mRNA decay that employs RNAi knockdown of known or putative decay factors in commercially available Tet-off cell systems. Reporter mRNAs of interest are expressed under the control of a tetracycline-regulated promoter, allowing pulse-chase mRNA decay assays to be conducted...
2018: Methods in Molecular Biology
https://www.readbyqxmd.com/read/29235495/identification-of-nonsense-mediated-mrna-decay-pathway-as-a-critical-regulator-of-p53-isoform-%C3%AE
#12
Lauren E Cowen, Yi Tang
Human TP53 gene encodes the tumor suppressor p53 and, via alternative splicing, the p53β and γ isoforms. Numerous studies have shown that p53β/γ can modulate p53 functions and are critically involved in regulation of cellular response to stress conditions. However, it is not fully understood how the β and γ isoforms are regulated following splicing. Using gene targeting and RNAi, we showed that depletion of the nonsense-mediated mRNA decay (NMD) factor SMG7 or UPF1 significantly induced p53β but had minimal effect on p53γ...
December 13, 2017: Scientific Reports
https://www.readbyqxmd.com/read/29210071/whole-exome-sequencing-of-sickle-cell-disease-patients-with-hyperhemolysis-syndrome-suggests-a-role-for-rare-variation-in-disease-predisposition
#13
Savannah Mwesigwa, Joann M Moulds, Alice Chen, Jonathan Flanagan, Vivien A Sheehan, Alex George, Neil A Hanchard
BACKGROUND: Hyperhemolysis syndrome (HHS) is an uncommon, but life-threatening, transfusion-related complication of red blood cell transfusion. HHS has predominantly been described in patients with sickle cell disease (SCD) and is difficult to diagnose and treat. The pathogenesis of HHS, including its occurrence in only a subset of apparently susceptible individuals, is poorly understood. We undertook whole-exome sequencing (WES) of 12 SCD-HHS patients to identify shared genetic variants that might be relevant to the development of HHS...
December 6, 2017: Transfusion
https://www.readbyqxmd.com/read/29208651/a-12-3-kb-duplication-within-the-vwf-gene-in-pigs-affected-by-von-willebrand-disease-type-3
#14
Stefanie Lehner, Mahnaz Ekhlasi-Hundrieser, Carsten Detering, Hanna Allerkamp, Christiane Pfarrer, Mario von Depka Prondzinski
Von Willebrand Disease (VWD) type 3 is a serious and sometimes fatal hereditary bleeding disorder. In pigs, the disease has been known for decades and affected animals are used as models for the human disease. Due to the recessive mode of inheritance of VWD type 3, severe bleeding is typically seen in homozygous individuals. We sequenced the complete porcine VWF (Von Willebrand Factor) cDNA and detected a tandem duplication of exons 17 and 18, causing a frameshift and a premature termination codon (p.Val814LeufsTer3) in the affected pig...
December 5, 2017: G3: Genes—Genomes—Genetics
https://www.readbyqxmd.com/read/29198722/a-recurrent-de-novo-nonsense-variant-in-zswim6-results-in-severe-intellectual-disability-without-frontonasal-or-limb-malformations
#15
Elizabeth E Palmer, Raman Kumar, Christopher T Gordon, Marie Shaw, Laurence Hubert, Renee Carroll, Marlène Rio, Lucinda Murray, Melanie Leffler, Tracy Dudding-Byth, Myriam Oufadem, Seema R Lalani, Andrea M Lewis, Fan Xia, Allison Tam, Richard Webster, Susan Brammah, Francesca Filippini, John Pollard, Judy Spies, Andre E Minoche, Mark J Cowley, Sarah Risen, Nina N Powell-Hamilton, Jessica E Tusi, LaDonna Immken, Honey Nagakura, Christine Bole-Feysot, Patrick Nitschké, Alexandrine Garrigue, Geneviève de Saint Basile, Emma Kivuva, Richard H Scott, Augusto Rendon, Arnold Munnich, William Newman, Bronwyn Kerr, Claude Besmond, Jill A Rosenfeld, Jeanne Amiel, Michael Field, Jozef Gecz
A recurrent de novo missense variant within the C-terminal Sin3-like domain of ZSWIM6 was previously reported to cause acromelic frontonasal dysostosis (AFND), an autosomal-dominant severe frontonasal and limb malformation syndrome, associated with neurocognitive and motor delay, via a proposed gain-of-function effect. We present detailed phenotypic information on seven unrelated individuals with a recurrent de novo nonsense variant (c.2737C>T [p.Arg913Ter]) in the penultimate exon of ZSWIM6 who have severe-profound intellectual disability and additional central and peripheral nervous system symptoms but an absence of frontonasal or limb malformations...
November 23, 2017: American Journal of Human Genetics
https://www.readbyqxmd.com/read/29192227/conservation-of-nonsense-mediated-mrna-decay-complex-components-throughout-eukaryotic-evolution
#16
Barry Causier, Zhen Li, Riet De Smet, James P B Lloyd, Yves Van de Peer, Brendan Davies
Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa...
November 30, 2017: Scientific Reports
https://www.readbyqxmd.com/read/29187512/familial-multinodular-goiter-and-sertoli-leydig-cell-tumors-associated-with-a-large-intragenic-in-frame-dicer1-deletion
#17
Maria Apellaniz-Ruiz, Leanne de Kock, Nelly Sabbaghian, Federica Guaraldi, Lucia Ghizzoni, Guglielmo Beccuti, William Foulkes
OBJECTIVE: Familial multinodular goiter (MNG), with or without ovarian Sertoli-Leydig cell tumor (SLCT), has been linked to DICER1 syndrome. We aimed to search for the presence of a germline DICER1 mutation in a large family with a remarkable history of MNG and SLCT, and to further explore the relevance of the identified mutation. DESIGN AND METHODS: Sanger sequencing, Fluidigm access array and multiplex ligation-dependent probe amplification (MLPA) techniques were used to screen for DICER1 mutations in germline DNA from 16 family members...
November 29, 2017: European Journal of Endocrinology
https://www.readbyqxmd.com/read/29167381/crispr-trap-a-clean-approach-for-the-generation-of-gene-knockouts-and-gene-replacements-in-human-cells
#18
Stefan Reber, Jonas Mechtersheimer, Sofia Nasif, Julio Aguila Benitez, Martino Colombo, Michal Domanski, Daniel Jutzi, Eva Hedlund, Marc-David Ruepp
CRISPR/Cas9-based genome editing offers the possibility to knock out (KO) almost any gene of interest in an affordable and simple manner. The most common strategy is the introduction of a frameshift into the open reading frame (ORF) of the target gene which truncates the coding sequence (CDS) and targets the corresponding transcript for degradation by nonsense-mediated mRNA decay (NMD). However, we show that transcripts containing premature termination codons (PTCs) are not always degraded efficiently and can generate C-terminally truncated proteins which might have residual or dominant negative functions...
November 22, 2017: Molecular Biology of the Cell
https://www.readbyqxmd.com/read/29164236/posttranscriptional-regulation-of-loxl1-expression-via-alternative-splicing-and-nonsense-mediated-mrna-decay-as-an-adaptive-stress-response
#19
Daniel Berner, Matthias Zenkel, Francesca Pasutto, Ursula Hoja, Panah Liravi, Gabriele C Gusek-Schneider, Friedrich E Kruse, Johannes Schödel, Andre Reis, Ursula Schlötzer-Schrehardt
Purpose: Alternative mRNA splicing coupled to nonsense-mediated decay (NMD) is a common mRNA surveillance pathway also known to dynamically modulate gene expression in response to cellular stress. Here, we investigated the involvement of this pathway in the regulation of lysyl oxidase-like 1 (LOXL1) expression in response to pseudoexfoliation (PEX)-associated pathophysiologic factors. Methods: Transcript levels of LOXL1 isoforms were determined in ocular tissues obtained from donor eyes without and with PEX syndrome...
November 1, 2017: Investigative Ophthalmology & Visual Science
https://www.readbyqxmd.com/read/29162348/human-aniridia-limbal-epithelial-cells-lack-expression-of-keratins-k3-and-k12
#20
Lorenz Latta, Arne Viestenz, Tanja Stachon, Sarah Colanesi, Nóra Szentmáry, Berthold Seitz, Barbara Käsmann-Kellner
Patients with aniridia often develop aniridia-related keratopathy (ARK), due to limbal stem cell insufficiency. This study aimed to determine the proliferative capacity and differentiation status of limbal epithelial cells (LECs) in patients with ARK. We also investigated the influences of PAX6 genotype on PAX6-transcript and protein level. Here two patients with aniridia underwent keratoplasty were examined. During the surgery, small limbal biopsies and pannus tissue were excised and processed for cell culture...
November 18, 2017: Experimental Eye Research
keyword
keyword
13616
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"