Read by QxMD icon Read

Protein degradation

Airi Ohsaki, Yuki Miyano, Rei Tanaka, Sei-Ichi Tanuma, Shuji Kojima, Mitsutoshi Tsukimoto
Skin inflammation is caused by excessive production of cytokines and chemokines in response to an external stimulus, such as radiation, but the mechanisms involved are not completely understood. Here, we report a novel mechanism of γ-irradiation-induced IL-6 production mediated by P2Y11 receptors in epidermal cells. After irradiation of HaCaT cells derived from human epidermal keratinocytes with 5 Gy of γ-rays (137 Cs : 0.78 Gy/min), IL-6 production was unchanged at 24 h after γ-irradiation, but was increased at 48 h...
March 16, 2018: Biological & Pharmaceutical Bulletin
Lisa A Sawicki, Leila H Choe, Katherine L Wiley, Kelvin H Lee, April M Kloxin
Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices...
March 12, 2018: ACS Biomaterials Science & Engineering
Fang Xu, Yingjie Zhu, Yuhong Lu, Zhi Yu, Jun Zhong, Yangqiu Li, Jingxuan Pan
Multiple myeloma (MM) is a malignancy of the bone marrow. The median survival time of patients with MM is only 5 years, with patients frequently experiencing relapse. Currently, there is no effective therapy for recurrent MM. The results of the present study indicated that pyrvinium pamoate (PP), a US Food and Drug Administration-approved oral anthelmintic drug, exhibited potent antitumor activity in MM cells in vitro . It is demonstrated that PP inhibited MM cell proliferation and mediated apoptosis. Notably, PP markedly promoted the degradation of β-catenin and abrogated its phosphorylation...
April 2018: Oncology Letters
Ying Han, Yangmin Zheng, Jingpu Zhang, Changqin Hu
Most third- and fourth-generation cephalosporins, such as cefotaxime, cefmenoxime, cefepime, and cefpirome, contain an aminothiazoyl ring at the C-7 position. Drug impurity, which may be produced either during synthesis or upon degradation, can induce adverse effects. Various reports have indicated that neurotoxicity is a side effect of cephalosporin. In this study, we developed methods for assessing the free-swimming activities and behaviors in zebrafish larvae in response to continuous darkness and stimulation of light-to-dark photoperiod transition by chemical treatments...
2018: Frontiers in Pharmacology
Chao Shi, Bei-Qing Pan, Feng Shi, Zhi-Hui Xie, Yan-Yi Jiang, Li Shang, Yu Zhang, Xin Xu, Yan Cai, Jia-Jie Hao, Ming-Rong Wang
Esophageal squamous cell carcinoma (ESCC) is one of the malignancies in digestive system, with a low 5-year survival rate. We previously revealed that Sequestosome 1 (SQSTM1/p62) protein levels were upregulated in ESCC tissues. However, it is unclear about the function of p62 and the underlying mechanism. Here, we used immunofluorescence and immunohistochemistry to investigate the expression of p62 in ESCC. Western blotting, quantitative RT-PCR, colony formation assay, flow cytometry, immunoprecipitation and xenograft tumor assay were used to analyze the role of p62 in vitro and vivo...
March 19, 2018: Oncogene
You-Take Oh, Guoqing Qian, Jiusheng Deng, Shi-Yong Sun
Monocyte chemotactic protein-induced protein-1 (MCPIP1; also called Regnase-1) encoded by the ZC3H12A gene critically regulates inflammatory responses and immune homeostasis primarily by RNase-dependent and -independent mechanisms. However, the relationship of MCPIP1 with apoptosis and cancer and the underlying mechanisms are largely unclear. The current study has demonstrated a previously uncovered connection between MCPIP1 and the negative regulation of death receptor 5 (DR5; also known as TRAIL-R2 or killer/DR5), a cell surface receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which is produced endogenously by various immune cells such as T cells...
March 19, 2018: Oncogene
Chenke Xu, Wei Wang, Jin Zhong, Fan Lei, Naihan Xu, Yaou Zhang, Weidong Xie
Canagliflozin (CAN) regulates intracellular glucose metabolism by targeting sodium-glucose co-transporter 2 (SGLT2) and intracellular glucose metabolism affects inflammation. In this study, we hypothesized that CAN might exert anti-inflammatory effects. The anti-inflammatory effects and action mechanisms of CAN were assayed in lipopolysaccharide (LPS)-induced RAW264.7 and THP-1 cells and NIH mice. Results showed that CAN significantly inhibited the production and release of interleukin (IL)-1, IL-6, or tumor necrosis factor-α (TNF-α) in the LPS-induced RAW264...
March 15, 2018: Biochemical Pharmacology
Yi Guan, Yiping Li, Gang Zhao, Yunqian Li
Impaired autophagic clearance of aggregated α-synuclein is considered as one of key mechanisms underlining Parkinson disease (PD). High-mobility group protein B1 (HMGB1) has recently been demonstrated to mediate persistent neuroinflammation and consequent progressive neurodegeneration by promoting multiple inflammatory and neurotoxic factors. In this study, we examined the influence of the overexpression of wild-type (WT) and mutant-type (MT, A53T and A30P) α-synuclein on the autophagy in neuroblastoma SH-SY5Y cells under starvation, and then investigated the regulation of endogenous HMGB1 on the α-synuclein degradation and on the starvation-induced autophagy in the α-synuclein-overexpressed SH-SY5Y cells...
March 15, 2018: Life Sciences
Eugene Jennifer Jin, Ferdi Ridvan Kiral, Mehmet Neset Ozel, Lara Sophie Burchardt, Marc Osterland, Daniel Epstein, Heike Wolfenberg, Steffen Prohaska, Peter Robin Hiesinger
Neurons are highly polarized cells that require continuous turnover of membrane proteins at axon terminals to develop, function, and survive. Yet, it is still unclear whether membrane protein degradation requires transport back to the cell body or whether degradation also occurs locally at the axon terminal, where live observation of sorting and degradation has remained a challenge. Here, we report direct observation of two cargo-specific membrane protein degradation mechanisms at axon terminals based on a live-imaging approach in intact Drosophila brains...
March 3, 2018: Current Biology: CB
Chengliang Zhang, Yanfeng Zhang, Hong Zhu, Jiajia Hu, Zhongshang Xie
Cardiac fibrosis is associated with diverse heart diseases. In response to different pathological irritants, cardiac fibroblasts may be induced to proliferate and differentiate into cardiac myofibroblasts, thus contributing to cardiac fibrosis. TGF-β signaling is implicated in the development of heart failure through the induction of cardiac fibrosis. C-Ski, an inhibitory regulator of TGF-β signaling, has been reported to suppress TGF-β1-induced human cardiac fibroblasts' proliferation and ECM protein increase; however, the underlying molecular mechanism needs further investigation...
March 15, 2018: Cellular Signalling
Mikhail M Savitski, Nico Zinn, Maria Faelth-Savitski, Daniel Poeckel, Stephan Gade, Isabelle Becher, Marcel Muelbaier, Anne J Wagner, Katrin Strohmer, Thilo Werner, Stephanie Melchert, Massimo Petretich, Anna Rutkowska, Johanna Vappiani, Holger Franken, Michael Steidel, Gavain M Sweetman, Omer Gilan, Enid Y N Lam, Mark A Dawson, Rab K Prinjha, Paola Grandi, Giovanna Bergamini, Marcus Bantscheff
Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis...
March 3, 2018: Cell
Aritri Sanyal, Runa Antony, Gautami Samui, Meloth Thamban
Cryoconite holes (cylindrical melt-holes on the glacier surface) are important hydrological and biological systems within glacial environments that support diverse microbial communities and biogeochemical processes. This study describes retrievable heterotrophic microbes in cryoconite hole water from three geographically distinct sites in Antarctica, and a Himalayan glacier, along with their potential to degrade organic compounds found in these environments. Microcosm experiments (22 days) show that 13-60% of the dissolved organic carbon in the water within cryoconite holes is bio-available to resident microbes...
March 2018: Microbiological Research
Muhammad Zahoor, Hesso Farhan
The secretory and autophagic pathways are two fundamental, evolutionary highly conserved endomembrane processes. Typically, secretion is associated with biosynthesis and delivery of proteins. In contrast, autophagy is usually considered as a degradative pathway. Thus, an analogy to metabolic pathways is evident. Anabolic (biosynthetic) and catabolic (degradative) pathways are usually intimately linked and intertwined, and likewise, the secretory and autophagy pathways are intertwined. Investigation of this link is an emerging area of research, and we will provide an overview of some of the major advances that have been made to contribute to understanding of how secretion regulates autophagy and vice versa...
2018: International Review of Cell and Molecular Biology
Caleb Pitcairn, Willayat Yousuf Wani, Joseph R Mazzulli
The finding that mutations in the Gaucher's Disease (GD) gene GBA1 are a strong risk factor for Parkinson's Disease (PD) has allowed for unique insights into pathophysiology centered on disruption of the autophagic-lysosomal pathway. Protein aggregations in the form of Lewy bodies and the effects of canonical PD mutations that converge on the lysosomal degradation system suggest that neurodegeneration in PD is mediated by dysregulation of protein homeostasis. The well-characterized clinical and pathological relationship between PD and the lysosomal storage disorder GD emphasizes the importance of dysregulated protein metabolism in neurodegeneration, and one intriguing piece of this relationship is a shared phenotype of autophagic-lysosomal dysfunction in both diseases...
March 14, 2018: Neurobiology of Disease
Huichen Li, Ye Liang, Xiaofeng Lai, Weidong Wang, Jiang Zhang, Suning Chen
Fbw7 is a type of E3 ubiquitin ligase that targets various proteins for degradation and has been found to have a high expression level in progenitor cells. Deletion of Fbw7 in the intestine results in the accumulation of progenitor cells. Moreover, Fbw7 loss increases the susceptibility of colorectal cancer. However, the involvement of Fbw7 in the progress and development of inflammatory bowel disease (IBD) is still controversial. To identify the function of Fbw7 on dextran sodium sulfate (DSS)-induced colonic inflammation, we generated Fbw7ΔG mice, lacking Fbw7 specifically in intestinal epithelium...
March 16, 2018: Biochemical and Biophysical Research Communications
V Kroezen, F S Schenkel, F Miglior, C F Baes, E J Squires
High-yielding dairy cattle are susceptible to ketosis, a metabolic disease that negatively affects the health, fertility, and milk production of the cow. Interest in breeding for more robust dairy cattle with improved resistance to disease is global; however, genetic evaluations for ketosis would benefit from the additional information provided by genetic markers. Candidate genes that are proposed to have a biological role in the pathogenesis of ketosis were investigated in silico and a custom panel of 998 putative single nucleotide polymorphism (SNP) markers was developed...
March 14, 2018: Journal of Dairy Science
Qiang Hao, Lei He, Jiming Zhou, Yuan Yuan, Xiaowen Ma, Zhijun Pang, Weina Li, Yingqi Zhang, Wei Zhang, Cun Zhang, Meng Li
BACKGROUND: Thymosin beta 4 (Tβ4) is a 43-amino-acid peptide with protective properties in myocardium injury. Previously, we produced a recombinant human dimeric Tβ4 (DTβ4). Here, the cardioprotective effects of DTβ4 and the molecular mechanisms underlying its enhanced activity were investigated. METHODS AND RESULTS: Echocardiography measurements showed that the cardioprotective effect of DTβ4 in myocardial infarction mice was significantly higher than that of wild-type Tβ4...
March 14, 2018: International Journal of Cardiology
Ahmed Ma'mun, Mohamed K Abd El-Rahman, Mohamed Abd El-Kawy
In recent years, the whole field of ion-selective electrodes(ISEs) in pharmaceutical sciences has expanded far beyond its original roots. The diverse range of opportunities offered by ISEs was broadly used in a number of pharmaceutical applications, with topics presented ranging from bioanalysis of drugs and metabolites, to protein binding studies, green analytical chemistry, impurity profiling, and drug dissolution in biorelevant media. Inspired from these advances and with the aim of extending the functional capabilities of ISEs, the primary focus of the present paper is the utilization of ISE as a tool in personalized medicine...
February 7, 2018: Journal of Pharmaceutical and Biomedical Analysis
Nicole Welsch, Ashley C Brown, Thomas H Barker, L Andrew Lyon
Excessive bleeding and resulting complications are a major cause of death in both trauma and surgical settings. Recently, there have been a number of investigations into the design of synthetic hemostatic agents with platelet-mimicking activity to effectively treat patients suffering from severe hemorrhage. We developed platelet-like particles from microgels composed of polymers carrying polyethylene glycol (PEG) side-chains and fibrin-targeting single domain variable fragment antibodies (PEG-PLPs). Comparable to natural platelets, PEG-PLPs were found to enhance the fibrin network formation in vitro through strong adhesion to the emerging fibrin clot and physical, non-covalent cross-linking of nascent fibrin fibers...
March 2, 2018: Colloids and Surfaces. B, Biointerfaces
Patrick Lüningschrör, Michael Sendtner
Regulated release of neurotransmitter depends on the orchestrated function of a large number of proteins in the presynaptic compartment. When synaptic vesicles fuse with the plasma membrane, these membranes and the attached proteins are endocytosed and either recycled or degraded. This turnover needs to be tightly regulated in a timely and spatially confined manner. Increasing evidence suggests that these mechanisms do not only serve for the removal of defective synaptic vesicles or structural proteins of the active zone but also contribute to pathways regulating synaptic strength...
March 14, 2018: Current Opinion in Neurobiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"