Read by QxMD icon Read

Unstructured Proteins

Vidhi D Thakkar, Robert M Cox, Bevan Sawatsky, Renata da Fontoura Budaszewski, Julien Sourimant, Katrin Wabbel, Negar Makhsous, Alexander L Greninger, Veronika von Messling, Richard K Plemper
The paramyxovirus replication machinery comprises the viral large (L) and phospho-(P) proteins in addition to the nucleocapsid (N) protein that encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section...
February 7, 2018: Journal of Virology
Adrian O Olivares, Tania A Baker, Robert T Sauer
AAA+ proteolytic machines use energy from ATP hydrolysis to degrade damaged, misfolded, or unneeded proteins. Protein degradation occurs within a barrel-shaped self-compartmentalized peptidase. Before protein substrates can enter this peptidase, they must be unfolded and then translocated through the axial pore of an AAA+ ring hexamer. An unstructured region of the protein substrate is initially engaged in the axial pore, and conformational changes in the ring, powered by ATP hydrolysis, generate a mechanical force that pulls on and denatures the substrate...
February 10, 2018: Annual Review of Physiology
Sandeep Chhabra, Patrick Fischer, Koh Takeuchi, Abhinav Dubey, Joshua J Ziarek, Andras Boeszoermenyi, Daniel Mathieu, Wolfgang Bermel, Norman E Davey, Gerhard Wagner, Haribabu Arthanari
Studies over the past decade have highlighted the functional significance of intrinsically disordered proteins (IDPs). Due to conformational heterogeneity and inherent dynamics, structural studies of IDPs have relied mostly on NMR spectroscopy, despite IDPs having characteristics that make them challenging to study using traditional 1H-detected biomolecular NMR techniques. Here, we develop a suite of 3D 15N-detected experiments that take advantage of the slower transverse relaxation property of 15N nuclei, the associated narrower linewidth, and the greater chemical shift dispersion compared with those of 1H and 13C resonances...
February 5, 2018: Proceedings of the National Academy of Sciences of the United States of America
T L Leighton, M C Mok, M S Junop, P L Howell, L L Burrows
Pseudomonas aeruginosa uses long, thin fibres called type IV pili (T4P) for adherence to surfaces, biofilm formation, and twitching motility. A conserved subcomplex of PilMNOP is required for extension and retraction of T4P. To better understand its function, we attempted to co-crystallize the soluble periplasmic portions of PilNOP, using reductive surface methylation to promote crystal formation. Only PilOΔ109 crystallized; its structure was determined to 1.7 Å resolution using molecular replacement. This new structure revealed two novel features: a shorter N-terminal α1-helix followed by a longer unstructured loop, and a discontinuous β-strand in the second αββ motif, mirroring that in the first motif...
February 8, 2018: Scientific Reports
Maaike Sterk, Cédric Romilly, E Gerhart H Wagner
Initiation is the rate-limiting step in translation. It is well-known that stable structure at a ribosome binding site (RBS) impedes initiation. The ribosome standby model of de Smit and van Duin, based on studies of the MS2 phage coat cistron, proposed how high translation rates can be reconciled with stable, inhibitory structures at an RBS. Here, we revisited the coat protein system and assessed the translation efficiency from its sequestered RBS by introducing standby mutations. Further experiments with gfp reporter constructs assessed the effects of 5'-tails-as standby sites-with respect to length and sequence contributions...
February 6, 2018: Nucleic Acids Research
Cathleen M Green, Olga Novikova, Marlene Belfort
Background: Inteins are mobile, self-splicing sequences that interrupt proteins and occur across all three domains of life. Scrutiny of the intein landscape in prokaryotes led to the hypothesis that some inteins are functionally important. Our focus shifts to eukaryotic inteins to assess their diversity, distribution, and dissemination, with the aim to comprehensively evaluate the eukaryotic intein landscape, understand intein maintenance, and dissect evolutionary relationships. Results: This bioinformatics study reveals that eukaryotic inteins are scarce, but present in nuclear genomes of fungi, chloroplast genomes of algae, and within some eukaryotic viruses...
2018: Mobile DNA
Karl L Banta, Xinyue Wang, Phani Das, Astar Winoto
Apoptosis is mediated through the extrinsic or intrinsic pathway. Key regulators of the intrinsic apoptotic pathway are the family of B cell lymphoma 2 (Bcl-2) proteins. The activity of the prototypical Bcl-2 protein is usually considered antiapoptotic. However, in some conditions, Bcl-2 associates with the orphan nuclear hormone receptors Nur77 and Nor-1, converting Bcl-2 into a proapoptotic molecule. Expression of Nur77 and Nor-1 is induced by a variety of signals, including those leading to apoptosis. Translocation of Nur77/Nor-1 to mitochondria results in their association with Bcl-2, exposing the Bcl-2 BH3 domain and causing apoptosis...
February 2, 2018: Journal of Biological Chemistry
Martina Baliova, Frantisek Jursky
We previously found that multimeric GlyT1aN16 protein exhibits increased diffusion in a polyacrylamide gel and shows an unusual time-dependent absorbance rearrangement, as revealed by the Bradford assay. Here, we find that glycine to alanine mutation eliminates the absorbance shift, but not the altered diffusion properties of GlyT1aN16, indicating that these two phenomena are not interconnected. The absorbance shift is apparent with both native and urea-denatured GlyT1aN16, suggesting that the effect is either not dependent on protein structure, or the required structure is restored very quickly following denaturant removal...
February 7, 2018: Electrophoresis
Minhyoung Lee, Gregory D Fairn
Oxysterol-binding protein-related proteins are implicated in the sensing and transporting lipids at the membrane contact sites. One of the members of the mammalian ORP family, ORP8, is thought to transport lipids through directly tethering both ER and PM membranes. Targeting to PM is thought to be mediated by N-terminal pleckstrin homology [1] domain via binding to phosphoinositides. Sequence alignments and NMR structural determination revealed that the PH domain of ORP8 is atypical and contains an insertion of 20 amino acids in an unstructured loop region that may potentially block interactions with ligands...
January 31, 2018: Biochemical and Biophysical Research Communications
Kyle T Powers, Adrian H Elcock, M Todd Washington
Eukaryotic DNA polymerase η catalyzes translesion synthesis of thymine dimers and 8-oxoguanines. It is comprised of a polymerase domain and a C-terminal region, both of which are required for its biological function. The C-terminal region mediates interactions with proliferating cell nuclear antigen (PCNA) and other translesion synthesis proteins such as Rev1. This region contains a ubiquitin-binding/zinc-binding (UBZ) motif and a PCNA-interacting protein (PIP) motif. Currently little structural information is available for this region of polymerase η...
January 29, 2018: Nucleic Acids Research
Jung-Hyun Na, Won-Kyu Lee, Yeon Gyu Yu
Intrinsically disordered proteins (IDPs) represent approximately 30% of the human genome and play key roles in cell proliferation and cellular signaling by modulating the function of target proteins via protein-protein interactions. In addition, IDPs are involved in various human disorders, such as cancer, neurodegenerative diseases, and amyloidosis. To understand the underlying molecular mechanism of IDPs, it is important to study their structural features during their interactions with target proteins. However, conventional biochemical and biophysical methods for analyzing proteins, such as X-ray crystallography, have difficulty in characterizing the features of IDPs because they lack an ordered three-dimensional structure...
January 27, 2018: International Journal of Molecular Sciences
Yu-Hua Lo, Monica C Pillon, Robin E Stanley
Determination of the full-length structure of ribosome assembly factor Nsa1 from Saccharomyces cerevisiae (S. cerevisiae) is challenging because of the disordered and protease labile C-terminus of the protein. This manuscript describes the methods to purify recombinant Nsa1 from S. cerevisiae for structural analysis by both X-ray crystallography and SAXS. X-ray crystallography was utilized to solve the structure of the well-ordered N-terminal WD40 domain of Nsa1, and then SAXS was used to resolve the structure of the C-terminus of Nsa1 in solution...
January 10, 2018: Journal of Visualized Experiments: JoVE
Javeed Ahmad, Aisha Farhana, Rita Pancsa, Simran Kaur Arora, Alagiri Srinivasan, Anil Kumar Tyagi, Madan Mohan Babu, Nasreen Zafar Ehtesham, Seyed Ehtesham Hasnain
Pathogens frequently employ eukaryotic linear motif (ELM)-rich intrinsically disordered proteins (IDPs) to perturb and hijack host cell networks for a productive infection. Mycobacterium tuberculosis has a relatively high percentage of IDPs in its proteome, the significance of which is not known. The Mycobacterium-specific PE-PPE protein family has several members with unusually high levels of structural disorder and disorder-promoting Ala/Gly residues. PPE37 protein, a member of this family, carries an N-terminal PPE domain capable of iron binding, two transmembrane domains, and a disordered C-terminal segment harboring ELMs and a eukaryotic nuclear localization signal (NLS)...
January 23, 2018: MBio
Jinwoo Shin, Goowon Jeong, Jong-Yoon Park, Hoyeun Kim, Ilha Lee
Kinetochore, a protein super-complex on the centromere of chromosomes, mediates chromosome segregation during cell division by providing attachment sites for spindle microtubules. The NDC80 complex, composed of four proteins, NDC80, NUF2, SPC24, and SPC25, is localized at the outer kinetochore and connects spindle fibers to the kinetochore. Although it is conserved across species, functional studies of this complex are rare in Arabidopsis. Here, we characterize a recessive mutant, meristem unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues...
January 21, 2018: Plant Journal: for Cell and Molecular Biology
Patrick D Ellis Fisher, Qi Shen, Bernice Akpinar, Luke K Davis, Kenny Kwok Hin Chung, David Baddeley, Andela Saric, Thomas J Melia, Bart W Hoogenboom, Chenxiang Lin, C Patrick Lusk
Nuclear pore complexes (NPCs) form gateways that control molecular exchange between the nucleus and the cytoplasm. They impose a diffusion barrier to macromolecules and enable the selective transport of nuclear transport receptors with bound cargo. The underlying mechanisms that establish these permeability properties remain to be fully elucidated, but require unstructured nuclear pore proteins rich in Phe-Gly (FG)-repeat domains of different types, such as FxFG and GLFG. While physical modeling and in vitro approaches have provided a framework for explaining how the FG network contributes to the barrier and transport properties of the NPC, it remains unknown whether the number and/or the spatial positioning of different FG-domains along a cylindrical, ~40 nm diameter transport channel contributes to their collective properties and function...
January 19, 2018: ACS Nano
Kyle C Arend, Erik M Lenarcic, Nathaniel J Moorman
The human cytomegalovirus (HCMV) IE1 and IE2 proteins are critical regulators of virus replication. Both proteins are needed to efficiently establish lytic infection, and nascent expression of IE1 and IE2 is critical for reactivation from latency. The regulation of IE1 and IE2 protein expression is thus a central event in the outcome of HCMV infection. Transcription of the primary transcript encoding both IE1 and IE2 is well studied, but relatively little is known about the post-transcriptional mechanisms that control IE1 and IE2 protein synthesis...
January 17, 2018: Journal of Virology
Martin Humenik, Madeleine Mohrand, Thomas Scheibel
The recombinant spider silk protein eADF4(C16) was genetically fused either with esterase 2 (EST2) or green fluorescent protein (GFP). The fusions EST-eADF4(C16) and GFP-eADF4(C16) were spectroscopically investigated and showed native structures of EST and GFP. The structural integrity was confirmed by the enzymatic activity of EST and the fluorescence of GFP. The spider silk moiety retained its intrinsically unstructured conformation in solution and the self-assembly into either nanofibrils or nanoparticles could be controlled by the concentration of phosphate...
January 16, 2018: Bioconjugate Chemistry
Qi Wang, Qiu Sun, Daniel M Czajkowsky, Zhifeng Shao
Topologically associating domains (TADs) are fundamental elements of the eukaryotic genomic structure. However, recent studies suggest that the insulating complexes, CTCF/cohesin, present at TAD borders in mammals are absent from those in Drosophila melanogaster, raising the possibility that border elements are not conserved among metazoans. Using in situ Hi-C with sub-kb resolution, here we show that the D. melanogaster genome is almost completely partitioned into >4000 TADs, nearly sevenfold more than previously identified...
January 15, 2018: Nature Communications
Patrick D Knight, Theodoros K Karamanos, Sheena E Radford, Alison E Ashcroft
Amyloid diseases represent a growing social and economic burden in the developed world. Understanding the assembly pathway and the inhibition of amyloid formation is key to developing therapies to treat these diseases. The neurodegenerative condition Machado-Joseph disease is characterised by the self-aggregation of the protein ataxin-3. Ataxin-3 consists of a globular N-terminal Josephin domain, which can aggregate into curvilinear protofibrils, and an unstructured, dynamically disordered C-terminal domain containing three ubiquitin interacting motifs separated by a polyglutamine stretch...
February 2018: European Journal of Mass Spectrometry
David Giganti, Kevin Yan, Carmen L Badilla, Julio M Fernandez, Jorge Alegre-Cebollada
The response of titin to mechanical forces is a major determinant of the function of the heart. When placed under a pulling force, the unstructured regions of titin uncoil while its immunoglobulin (Ig) domains unfold and extend. Using single-molecule atomic force microscopy, we show that disulfide isomerization reactions within Ig domains enable a third mechanism of titin elasticity. Oxidation of Ig domains leads to non-canonical disulfide bonds that stiffen titin while enabling force-triggered isomerization reactions to more extended states of the domains...
January 12, 2018: Nature Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"