Read by QxMD icon Read

Condense matter

David A Mazziotti
A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T2 condition...
October 7, 2016: Physical Review Letters
M Garg, M Zhan, T T Luu, H Lakhotia, T Klostermann, A Guggenmos, E Goulielmakis
The frequency of electric currents associated with charge carriers moving in the electronic bands of solids determines the speed limit of electronics and thereby that of information and signal processing. The use of light fields to drive electrons promises access to vastly higher frequencies than conventionally used, as electric currents can be induced and manipulated on timescales faster than that of the quantum dephasing of charge carriers in solids. This forms the basis of terahertz (10(12) hertz) electronics in artificial superlattices, and has enabled light-based switches and sampling of currents extending in frequency up to a few hundred terahertz...
October 19, 2016: Nature
W Knafo, F Duc, F Bourdarot, K Kuwahara, H Nojiri, D Aoki, J Billette, P Frings, X Tonon, E Lelièvre-Berna, J Flouquet, L-P Regnault
URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state...
October 20, 2016: Nature Communications
Aram Gragossian, Denis V Seletskiy, Mansoor Sheik-Bahae
The interaction of intense near- and mid-infrared laser pulses with rare gases has produced bursts of radiation with spectral content extending into the extreme ultraviolet and soft x-ray region of electromagnetic spectrum. On the other end of the spectrum, laser-driven gas plasmas has been shown to produce coherent sub-harmonic optical waveforms, covering from terahertz (THz) to mid- and near-infrared frequency spectral band. Both processes can be enhanced via a combination of a driving field and its second harmonic...
October 19, 2016: Scientific Reports
Shih-Wei Su, Zhen-Kai Lu, Shih-Chuan Gou, Wen-Te Liao
Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles...
October 17, 2016: Scientific Reports
Hidetsugu Sakaguchi, E Ya Sherman, Boris A Malomed
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons...
September 2016: Physical Review. E
Andrew F May, Stuart Calder, David S Parker, Brian C Sales, Michael A McGuire
Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe2Ge2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. Temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K...
October 14, 2016: Scientific Reports
Taylor A Brown, Benjamin A Jackson, Benjamin J Bythell, Alexandra C Stenson
The belief that chromatographic separation of complex environmental mixtures or natural organic matter (NOM) produces featureless humps from which little, if anything, can be learned is still pervasive. Meanwhile improvements in chromatography and the use of information-rich detection methods have led to meaningful fractionation and revealed consistent data. Here, we build on this work and developed a robust, facile two-dimensional separation with high orthogonality between dimensions. We illustrate that re-injections of fractions (both in the first and in the second dimension) leads to individual peaks at the expected retention times and use information-rich detection to investigate the basis on which NOM is fractionated...
October 5, 2016: Journal of Chromatography. A
J Ventura-Cordero, P G González-Pech, P R Jaimez-Rodriguez, G I Ortíz-Ocampo, C A Sandoval-Castro, J F J Torres-Acosta
It is important to determine whether gastrointestinal nematodes (GINs) affect foliage choice of goats leading to confirm the expression of a self-medication behavior. This study investigated the effect of GIN infection on tropical foliage selection by goats. During experimental stage 1 (10 days), goats had a natural mixed GIN infection, and at stage 2 (10 days), goats were treated with effective anthelmintics to maintain them free of GIN infection. During stage 1 the twelve adult goats (32 ± 2.3 kg live weight [LW]) were assigned to three groups (n = 4) according to their initial GIN infection status: HI group, with fecal egg count (FEC) between 1450 and 2150 eggs per g/feces (EPG); MI group, medium FEC (592-1167 EPG); and the NI group, free from GIN infection...
October 9, 2016: Tropical Animal Health and Production
Geun-Hye Yu, Seungshik Park, Kwon-Ho Lee
In this study, 24 h size-segregated particulate matter (PM) samples were collected between September 2012 and August 2013 at an urban site in Korea to investigate seasonal mass size distributions of PM and its water-soluble components as well as to infer the possible sources of size-resolved water-soluble organic carbon (WSOC) using a positive matrix factorization (PMF) model. The potential source contribution function (PSCF) was also computed to identify the possible source regions of size-resolved WSOC. The seasonal average contribution of water-soluble organic matter to PM1...
October 12, 2016: Environmental Science. Processes & Impacts
Martin Claassen, Chunjing Jia, Brian Moritz, Thomas P Devereaux
Monolayer transition-metal dichalcogenides are novel materials which at low energies constitute a condensed-matter realization of massive relativistic fermions in two dimensions. Here, we show that this picture breaks for optical pumping-instead, the added complexity of a realistic materials description leads to a new mechanism to optically induce topologically protected chiral edge modes, facilitating optically switchable conduction channels that are insensitive to disorder. In contrast to graphene and previously discussed toy models, the underlying mechanism relies on the intrinsic three-band nature of transition-metal dichalcogenide monolayers near the band edges...
October 10, 2016: Nature Communications
Arko Graf, Laura Tropf, Yuriy Zakharko, Jana Zaumseil, Malte C Gather
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths...
October 10, 2016: Nature Communications
Stephen R Leone, Daniel M Neumark
Attosecond science represents a new frontier in atomic, molecular, and condensed matter physics, enabling one to probe the exceedingly fast dynamics associated with purely electronic dynamics in a wide range of systems. This paper presents a brief discussion of the technology required to generate attosecond light pulses and gives representative examples of attosecond science carried out in several laboratories. Attosecond transient absorption, a very powerful method in attosecond science, is then reviewed and several examples of gas phase and condensed phase experiments that have been carried out in the Leone/Neumark laboratories are described...
September 29, 2016: Faraday Discussions
Lipeng Chen, Maxim F Gelin, Vladimir Y Chernyak, Wolfgang Domcke, Yang Zhao
The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical intersections is analyzed for a two-state two-mode model chosen to represent the S2(ππ*)-S1(nπ*) conical intersection in pyrazine (the system) which is bilinearly coupled to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system-bath coupling is modeled by the Drude spectral function. The equation of motion for the reduced density matrix of the system is solved numerically exactly with the hierarchy equation of motion method using graphics-processor-unit (GPU) technology...
September 20, 2016: Faraday Discussions
Hyunwoo Jin, Keundong Lee, Seung-Hyub Baek, Jin-Sang Kim, Byung-Ki Cheong, Bae Ho Park, Sungwon Yoon, B J Suh, Changyoung Kim, S S A Seo, Suyoun Lee
Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0...
October 5, 2016: Scientific Reports
Eric Braaten, Abhishek Mohapatra, Hong Zhang
If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions...
September 16, 2016: Physical Review Letters
Erik Hans Hoffmann, Andreas Tilgner, Roland Schrödner, Peter Bräuer, Ralf Wolke, Hartmut Herrmann
Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO4 (2-)) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols...
September 29, 2016: Proceedings of the National Academy of Sciences of the United States of America
Vera N Smolyaninova, Christopher Jensen, William Zimmerman, Joseph C Prestigiacomo, Michael S Osofsky, Heungsoo Kim, Nabil Bassim, Zhen Xing, Mumtaz M Qazilbash, Igor I Smolyaninov
One of the most important goals of condensed matter physics is materials by design, i.e. the ability to reliably predict and design materials with a set of desired properties. A striking example is the deterministic enhancement of the superconducting properties of materials. Recent experiments have demonstrated that the metamaterial approach is capable of achieving this goal, such as tripling the critical temperature TC in Al-Al2O3 epsilon near zero (ENZ) core-shell metamaterial superconductors. Here, we demonstrate that an Al/Al2O3 hyperbolic metamaterial geometry is capable of a similar TC enhancement, while having superior transport and magnetic properties compared to the core-shell metamaterial superconductors...
2016: Scientific Reports
Chen-Rong Liu, Yao-Wu Guo, Zhuo-Jun Li, Wei Li, Yan Chen
The quest for exotic quantum states of matter has become one of the most challenging tasks in modern condensed matter communications. Interplay between topology and strong electron-electron interactions leads to lots of fascinating effects since the discovery of the fractional quantum Hall effect. Here, we theoretically study the Rashba-type spin-orbit coupling effect on a fractional quantum spin Hall system by means of finite size exact diagonalization. Numerical evidences from the ground degeneracies, states evolutions, entanglement spectra, and static structure factor calculations demonstrate that non-trivial fractional topological Tao-Thouless-like quantum state can be realized in the fractional quantum spin Hall effect in a thin torus geometric structure by tuning the strength of spin-orbit coupling...
2016: Scientific Reports
Y Tao, A Eichler, T Holzherr, C L Degen
Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins and nanoscale magnetic resonance imaging. Here we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from a write pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0...
September 20, 2016: Nature Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"