Read by QxMD icon Read


S Ojha, S Deep, S Kundu
Due to an increase in the occurrence of multi drug resistant microorganisms a need for the development of alternative drugs comes in light. This alternative drug should be such that the microorganisms should not be able to develop resistance against them easily. Antimicrobial peptides are the most potential candidates to be developed as alternative drug. In the present study the three toxins ETA, ETB and PVL of Staphylococcus aureus were docked with four antimicrobial peptides, Ib-AMP1, JCPep7, Snakin2, Sesquin, derived from plants...
July 31, 2017: Cellular and Molecular Biology
Jingfang Su, Hongwei Sun, Junjie Liu, Zhaokui Guo, Guoquan Fan, Gang Gu, Guanghua Wang
A lytic podophage RSPI1 was isolated from tobacco field soil collected in Fujian Province, South China using host bacterium Ralstonia solanacearum Tb15-14. Whole genome sequencing of this phage was performed using the high-throughput Ion Torrent PGM Sequencer. The complete genome of RSPI1 was 43,211 bp in length with a mean DNA G + C content of 61.5%. A total of 48 open reading frames were identified with lengths ranging from 132 bp to 5,061 bp, of which, 11, 12 and 25 were identified as functional, structural and unknown genes, respectively...
December 2017: Archives of Virology
Chanprapa Imjongjirak, Pawanrat Amphaiphan, Walaiporn Charoensapsri, Piti Amparyup
Antimicrobial peptide (AMP) is an important molecule in the innate immune system. Here, we report the cloning and functional studies of proline-rich AMPs (PR-AMPs) from the three species of mud crab: Scylla paramamosain, S. serrata, and the swimming crab Portunus pelagicus. The deduced peptides revealed that they contain the putative signal peptides and encode for mature peptides, which contain sequence architecture similar to a 6.5-kDa proline-rich AMP of the shore crab, Carcinus maenas which showed similarity with the bactenecin7...
May 4, 2017: Developmental and Comparative Immunology
Biyun Zhu, Hua Gao, Gang Xu, Dewei Wu, Susheng Song, Hongshan Jiang, Shuifang Zhu, Tiancong Qi, Daoxin Xie
RNA intereferencing (RNAi) pathway regulates antiviral immunity and mediates plant growth and development. Despite considerable research efforts, a few components in RNAi pathway have been revealed, including ARGONAUTEs (AGOs), DICER-LIKEs (DCLs), RNA-dependent RNA polymerase 1 and 6 (RDR1/6), and ALTERED MERISTEM PROGRAM 1 (AMP1). In this study, we performed a forward genetic screening for enhancers of rdr6 via inoculation of CMV2aTΔ2b, a 2b-deficient Cucumber Mosaic Virus that is unable to suppress RNAi-mediated antiviral immunity...
2017: Frontiers in Plant Science
Min Woo Lee, Rira Seo, Yu Jeong Lee, Ju Hye Bae, Jung-Kwon Park, Joung-Hahn Yoon, Jei Wan Lee, Ho Won Jung
An Arabidopsis thaliana ALTERED MERISTEM PROGRAM1 (AtAMP1), which encodes a putative glutamate carboxypeptidase, not only controls shoot apical meristem development, but also is involved in tolerance response to abiotic stresses. Here, we introduce a novel mutant; named amp1-32 that is a phenocopier to previously isolated different amp1 mutant alleles. Interestingly, tiny leaves were continuously developed at the bottom of pre-emerged leaves in the amp1-32. The amp1-32 mutant was less sensitive to heat shock treatment lasting for 3 h, whereas disease symptoms were severely developed in the mutant after Pseudomonas syringae infection...
November 18, 2016: Biochemical and Biophysical Research Communications
Youngho Kwon, Jennifer Chiang, Grant Tran, Guri Giaever, Corey Nislow, Bum-Soo Hahn, Youn-Sig Kwak, Ja-Choon Koo
Genome-wide screening of Saccharomyces cerevisiae revealed that signaling pathways related to the alkaline pH stress contribute to resistance to plant antimicrobial peptide, Pn-AMP1. Plant antimicrobial peptides (AMPs) are considered to be promising candidates for controlling phytopathogens. Pn-AMP1 is a hevein-type plant AMP that shows potent and broad-spectrum antifungal activity. Genome-wide chemogenomic screening was performed using heterozygous and homozygous diploid deletion pools of Saccharomyces cerevisiae as a chemogenetic model system to identify genes whose deletion conferred enhanced sensitivity to Pn-AMP1...
December 2016: Planta
Patrícia Branco, Diana Francisco, Margarida Monteiro, Maria Gabriela Almeida, Jorge Caldeira, Nils Arneborg, Catarina Prista, Helena Albergaria
We recently found that Saccharomyces cerevisiae (strain CCMI 885) secretes antimicrobial peptides (AMPs) derived from the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) that are active against various wine-related yeast and bacteria. Here, we show that several other S. cerevisiae strains also secrete natural biocide fractions during alcoholic fermentation, although at different levels, which correlates with the antagonistic effect exerted against non-Saccharomyces yeasts. We, therefore, term this biocide saccharomycin...
January 2017: Applied Microbiology and Biotechnology
Yantao Bao, Jia Liu, Jia You, Di Wu, Yang Yu, Chang Liu, Lei Wang, Fei Wang, Lu Xu, Liqun Wang, Nan Wang, Xing Tian, Falin Wang, Hongbin Liang, Yating Gao, Xiaobo Cui, Guohua Ji, Jing Bai, Jingcui Yu, Xiangning Meng, Yan Jin, Wenjing Sun, Xin-Yuan Guan, Chunyu Zhang, Songbin Fu
BACKGROUND: Sei-1 is an oncogene capable of inducing double minute chromosomes (DMs) formation. DMs are hallmarks of amplification and contribute to oncogenesis. However, the mechanism of Sei-1 inducing DMs formation remains unelucidated. RESULTS: DMs formation significantly increased during serial passage in vivo and gradually decreased following culture in vitro. micro nuclei (MN) was found to be responsible for the reduction. Of the DMs-carrying genes, Met was found to be markedly amplified, overexpressed and highly correlated with DMs formation...
August 30, 2016: Oncotarget
Olena Poretska, Saiqi Yang, Delphine Pitorre, Wilfried Rozhon, Karin Zwerger, Marcos Castellanos Uribe, Sean May, Peter McCourt, Brigitte Poppenberger, Tobias Sieberer
ALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. In this work we evaluated the level of functional conservation between AMP1 and its human homolog HsGCPII, a tumor marker of medical interest...
June 2016: Plant Physiology
Behrooz Darbani, Shahin Noeparvar, Søren Borg
In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis...
2015: PloS One
Jai Prakash, Balraj Mittal, Shally Awasthi, Neena Srivastava
BACKGROUND: Adiponectin is an abundant adipose tissue-derived protein with anti-atherogenic, anti-inflammatory and antidiabetic properties. Plasma adiponectin levels are decreased in obesity, type 2 diabetes, and coronary artery disease and low adiponectin levels also predict insulin resistance (IR). METHODS: Case-control study in which 642 male and female subjects were participated from the North Indian population. Lipid, insulin, leptin and adiponectin level were estimated using standard protocols by commercially available test kits...
2015: International Journal of Preventive Medicine
Teshome L Aboye, Adam A Strömstedt, Sunithi Gunasekera, Jan G Bruhn, Hesham El-Seedi, K Johan Rosengren, Ulf Göransson
Naturally occurring cystine knot peptides show a wide range of biological activity, and as they have inherent stability they represent potential scaffolds for peptide-based drug design and biomolecular engineering. Here we report the discovery, sequencing, chemical synthesis, three-dimensional solution structure determination and bioactivity of the first cystine knot peptide from Cactaceae (cactus) family: Ep-AMP1 from Echinopsis pachanoi. The structure of Ep-AMP1 (35 amino acids) conforms to that of the inhibitor cystine knot (or knottin) family but represents a novel diverse sequence; its activity was more than 500 times higher against bacterial than against eukaryotic cells...
May 4, 2015: Chembiochem: a European Journal of Chemical Biology
Wenwen Huang, Delphine Pitorre, Olena Poretska, Christine Marizzi, Nikola Winter, Brigitte Poppenberger, Tobias Sieberer
Plants are able to reiteratively form new organs in an environmentally adaptive manner during postembryonic development. Organ formation in plants is dependent on stem cell niches (SCNs), which are located in the so-called meristems. Meristems show a functional zonation along the apical-basal axis and the radial axis. Shoot apical meristems of higher plants are dome-like structures, which contain a central SCN that consists of an apical stem cell pool and an underlying organizing center. Organ primordia are formed in the circular peripheral zone (PZ) from stem cell descendants in which differentiation programs are activated...
April 2015: Plant Physiology
Mábio J Santana, Aline L de Oliveira, Luiz H K Queiroz Júnior, Santi M Mandal, Carolina O Matos, Renata de O Dias, Octavio L Franco, Luciano M Lião
Multifunctional and promiscuous antimicrobial peptides (AMPs) can be used as an efficient strategy to control pathogens. However, little is known about the structural properties of plant promiscuous AMPs without disulfide bonds. CD and NMR were used to elucidate the structure of the promiscuous peptide Cn-AMP1, a disulfide-free peptide isolated from green coconut water. Data here reported shows that peptide structure is transitory and could be different according to the micro-environment. In this regard, Cn-AMP1 showed a random coil in a water environment and an α-helical structure in the presence of SDS-d25 micelles...
February 27, 2015: FEBS Letters
Jixiang Kong, Steffen Lau, Gerd Jürgens
Sexual reproduction of flowering plants is distinguished by double fertilization—the two sperm cells delivered by a pollen tube fuse with the two gametic cells of the female gametophyte, the egg and the central cell—inside the ovule to give rise to the embryo and the nutritive endosperm, respectively. The pollen tube is attracted by nongametic synergid cells, and how these two cells of the female gametophyte are specified is currently unclear. Here, we show that ALTERED MERISTEM PROGRAM 1 (AMP1), encoding a protein associated with the endoplasmic reticulum, is required for synergid cell fate during Arabidopsis female gametophyte development...
January 19, 2015: Current Biology: CB
Yiping Gao, He Zhao, Mengyu Lv, Guozhong Sun, Xueju Yang, Haibo Wang
UNLABELLED: The error-prone PCR is one of the main methods for in vitro gene mutagenesis, usually through adding Mn2+ increasing Mg2+ and dCTP/dTTP concentration. OBJECTIVE AND METHODS: In this study, both the antifungal protein gene Ace-AMP1 from Allium cepa and the Bt toxin gene cry1A(c) from Bacillus thuringiensis were subjected to PCR mutagenesis through reducing the dATP concentration, but without adding Mn2+ or adjusting other PCR components. RESULTS: The result showed that the rates of base mutation and sequence variation were increased along with the decrease of dATP concentrations...
January 4, 2014: Wei Sheng Wu Xue Bao, Acta Microbiologica Sinica
William F Porto, Diego O Nolasco, Octavio L Franco
Glycine-rich proteins (GRPs) derived from plants compose a family of proteins and peptides that share a glycine repeat domain and they can perform diverse functions. Two structural conformations have been proposed for GRPs: glycine loops arranged as a Velcro and an anti-parallel β-sheet with several β-strands. The antimicrobial peptide Pg-AMP1 is the only plant GRP with antibacterial activity reported so far and its structure remains unclear. Recently, its recombinant expression was reported, where the recombinant peptide had an additional methionine residue at the N-terminal and a histidine tag at the C-terminal (His6-tag)...
May 2014: Peptides
Hongkun Lv, Jun Zheng, Tianyu Wang, Junjie Fu, Junling Huai, Haowei Min, Xiang Zhang, Baohua Tian, Yunsu Shi, Guoying Wang
The d2003 is a natural dwarf mutant from maize inbred line K36 and has less than one-third of K36 plant height with severely shortened internodes. In this study, we reported the cloning of d2003 gene using positional cloning. The results showed that there was a single-base insertion in the coding region of Viviparous8 (VP8) in d2003 mutant, which resulted in a premature stop codon. Further genetic allelism tests confirmed that d2003 mutation is a novel allele of VP8. VP8 is mainly expressed in the stem apex, young leaves, and developing vascular tissues, and its expression levels in nodes are significantly higher than that in internodes at 12-leaf stage...
February 2014: Plant Molecular Biology
Xuan Ma, Xiaofeng Cao, Beixin Mo, Xuemei Chen
miRNAs elicit gene silencing at the post-transcriptional level by several modes of action: translational repression, mRNA decay, and mRNA cleavage. Studies in animals have suggested that translational repression occurs at early steps of translation initiation, which can be followed by deadenylation and mRNA decay. Plant miRNAs were originally thought to solely participate in mRNA cleavage, but increasing evidence has indicated that they are also commonly involved in translational inhibition. Here we discuss recent findings on miRNA-mediated translational repression in plants...
October 2013: RNA Biology
Shengben Li, Lin Liu, Xiaohong Zhuang, Yu Yu, Xigang Liu, Xia Cui, Lijuan Ji, Zhiqiang Pan, Xiaofeng Cao, Beixin Mo, Fuchun Zhang, Natasha Raikhel, Liwen Jiang, Xuemei Chen
Translation inhibition is a major but poorly understood mode of action of microRNAs (miRNAs) in plants and animals. In particular, the subcellular location where this process takes place is unknown. Here, we show that the translation inhibition, but not the mRNA cleavage activity, of Arabidopsis miRNAs requires ALTERED MERISTEM PROGRAM1 (AMP1). AMP1 encodes an integral membrane protein associated with endoplasmic reticulum (ER) and ARGONAUTE1, the miRNA effector and a peripheral ER membrane protein. Large differences in polysome association of miRNA target RNAs are found between wild-type and the amp1 mutant for membrane-bound, but not total, polysomes...
April 25, 2013: Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"