keyword
MENU ▼
Read by QxMD icon Read
search

Reprogramming

keyword
https://www.readbyqxmd.com/read/28637323/evolution-of-transcription-activator-like-effectors-in-xanthomonas-oryzae
#1
Annett Erkes, Maik Reschke, Jens Boch, Jan Grau
Transcription activator-like effectors (TALEs) are secreted by plant-pathogenic Xanthomonas bacteria into plant cells where they act as transcriptional activators and, hence, are major drivers in reprogramming the plant for the benefit of the pathogen. TALEs possess a highly repetitive DNA-binding domain of typically 34 amino acid tandem repeats, where amino acid 12 and 13, termed repeat variable di-residue (RVD), determine target specificity. Different Xanthomonas strains possess different repertoires of TALEs...
June 14, 2017: Genome Biology and Evolution
https://www.readbyqxmd.com/read/28637241/the-chromatin-remodeling-complex-swi-snf-regulates-splicing-of-meiotic-transcripts-in-saccharomyces-cerevisiae
#2
Srivats Venkataramanan, Stephen Douglass, Anoop R Galivanche, Tracy L Johnson
Despite its relatively streamlined genome, there are important examples of regulated RNA splicing in Saccharomyces cerevisiae, such as splicing of meiotic transcripts. Like other eukaryotes, S. cerevisiae undergoes a dramatic reprogramming of gene expression during meiosis, including regulated splicing of a number of crucial meiosis-specific RNAs. Splicing of a subset of these is dependent upon the splicing activator Mer1. Here we show a crucial role for the chromatin remodeler Swi/Snf in regulation of splicing of meiotic genes and find that the complex affects meiotic splicing in two ways...
May 10, 2017: Nucleic Acids Research
https://www.readbyqxmd.com/read/28636890/memory-t-cells-a-helpful-guard-for-allogeneic-hematopoietic-stem-cell-transplantation-without-causing-graft-versus-host-disease
#3
REVIEW
Wei Huang, Nelson J Chao
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (AHSCT) and the major cause of nonrelapse morbidity and mortality of AHSCT. In AHSCT, donor T cells facilitate hematopoietic stem cell (HSC) engraftment, contribute to anti-infection immunity, and mediate graft-versus-leukemia (GVL) responses. However, activated alloreactive T cells also attack recipient cells in vital organs, leading to GVHD. Different T-cell subsets, including naïve T (TN) cells, memory T (TM) cells, and regulatory T (Treg) cells mediate different forms of GVHD and GVL; TN cells mediate severe GVHD, whereas TM cells do not cause GVHD, but preserve T-cell function including GVL...
June 13, 2017: Hematology/oncology and Stem Cell Therapy
https://www.readbyqxmd.com/read/28636277/esrrb-plays-a-crucial-role-in-the-promotion-of-porcine-cell-reprogramming
#4
Fan Yang, Yahui Ren, Huan Li Huayan Wang
The estrogen-related receptor b (ESRRB) is an orphan nuclear receptor and targets many genes involved in self-renewal and pluripotency. In mouse ES cells, overexpression of ESRRB can maintain LIF-independent self-renewal in the absence of Nanog. However, the fundamental features of porcine ESRRB remain elusive. In this study, we revealed the expression profiles of ESRRB in both porcine pluripotent stem cells and early stage embryos and dissected the functional domains of ESRRB protein to prove that ESRRB is a key transcription factor that enhanced porcine pluripotent gene activation...
June 21, 2017: Journal of Cellular Physiology
https://www.readbyqxmd.com/read/28634230/similarity-in-gene-regulatory-networks-suggests-that-cancer-cells-share-characteristics-of-embryonic-neural-cells
#5
Zan Zhang, Anhua Lei, Liyang Xu, Lu Chen, Yonglong Chen, Xuena Zhang, Yan Gao, Xiaoli Yang, Min Zhang, Ying Cao
Cancer cells are immature cells resulting from cellular reprogramming by gene misregulation, and re-differentiation is expected to reduce malignancy. It is unclear, however, whether cancer cells can undergo terminal differentiation. Here, we show that, inhibition of the epigenetic modification enzymes enhancer of zeste homolog 2 (EZH2), histone deacetylases (HDACs) 1 and 3, lysine demethylase 1A (LSD1), or DNA methyltransferase 1 (DNMT1), which all promote cancer development and progression, leads to postmitotic neuron-like differentiation with loss of malignant features in distinct solid cancer cell lines...
June 20, 2017: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/28634072/mitochondrial-dynamics-coordinate-cell-differentiation
#6
Masafumi Noguchi, Atsuko Kasahara
Cells differentiate into specific and functional lineages to build up tissues. It has been shown in several tissues that mitochondrial morphology, levels of "mitochondrial shaping" proteins, and mitochondrial functions change upon differentiation. In this review, we highlight the significance of mitochondrial dynamics and functions in tissue development, cell differentiation, and reprogramming processes. Signalling cascades are critical for tissue stem cell maintenance and cell fate determination, and growing evidence demonstrates mitochondria could act as a centre of intra and extracellular signals to coordinate signalling pathways, such as Notch, Wnt, and YAP/TAZ signalling...
June 17, 2017: Biochemical and Biophysical Research Communications
https://www.readbyqxmd.com/read/28633298/protein-expression-in-tension-wood-formation-monitored-at-high-tissue-resolution-in-populus
#7
Joakim Bygdell, Vaibhav Srivastava, Ogonna Obudulu, Manoj K Srivastava, Robert Nilsson, Björn Sundberg, Johan Trygg, Ewa J Mellerowicz, Gunnar Wingsle
Tension wood (TW) is a specialized tissue with contractile properties that is formed by the vascular cambium in response to gravitational stimuli. We quantitatively analysed the proteomes of Populus tremula cambium and its xylem cell derivatives in stems forming normal wood (NW) and TW to reveal the mechanisms underlying TW formation. Phloem-, cambium-, and wood-forming tissues were sampled by tangential cryosectioning and pooled into nine independent samples. The proteomes of TW and NW samples were similar in the phloem and cambium samples, but diverged early during xylogenesis, demonstrating that reprogramming is an integral part of TW formation...
June 13, 2017: Journal of Experimental Botany
https://www.readbyqxmd.com/read/28633080/disruptive-non-disruptive-applications-of-crispr-cas9
#8
REVIEW
Jonathan L Schmid-Burgk
The bacterial type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR Associated (Cas) systems, and in particular Streptococcus pyogenes CRISPR-Cas9, have been broadly applied to edit the genome of bacterial and eukaryotic cells. Cas9, which is an RNA-guided programmable nuclease, is a powerful tool for disrupting protein-coding genes. Cas9 cleaves target sites to generate a double-strand break (DSB) that is repaired via an error-prone repair process, leading to insertion/deletion mutations and gene knockouts...
June 17, 2017: Current Opinion in Biotechnology
https://www.readbyqxmd.com/read/28632775/unique-cellular-interactions-between-pancreatic-cancer-cells-and-the-omentum
#9
Valerya Feygenzon, Shelly Loewenstein, Nir Lubezky, Metsada Pasmanic-Chor, Osnat Sher, Joseph M Klausner, Guy Lahat
Pancreatic cancer is a common cause of cancer-related mortality. Omental spread is frequent and usually represents an ominous event, leading to patient death. Omental metastasis has been studied in ovarian cancer, but data on its role in pancreatic cancer are relatively scarce and the molecular biology of this process has yet to be explored. We prepared tissue explants from human omental fat, and used conditioned medium from the explants for various in vitro and in vivo experiments designed to evaluate pancreatic cancer development, growth, and survival...
2017: PloS One
https://www.readbyqxmd.com/read/28632762/dot1l-inhibitor-improves-early-development-of-porcine-somatic-cell-nuclear-transfer-embryos
#10
Jia Tao, Yu Zhang, Xiaoyuan Zuo, Renyun Hong, Hui Li, Xing Liu, Weiping Huang, Zubing Cao, Yunhai Zhang
Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known...
2017: PloS One
https://www.readbyqxmd.com/read/28630946/differentiation-and-inflammation-best-enemies-in-gastrointestinal-carcinogenesis
#11
Nathan M Krah, L Charles Murtaugh
While recent studies demonstrate that cancer can arise from mutant stem cells, this hypothesis does not explain why tissues without defined stem cell populations are susceptible to inflammation-driven tumorigenesis. We propose that chronic inflammatory diseases, such as colitis and pancreatitis, predispose to gastrointestinal (GI) adenocarcinoma by reprogramming differentiated cells. Focusing on colon and pancreas, we discuss recently discovered connections between inflammation and loss of cell differentiation, and propose that dysregulation of cell fate may be a novel rate-limiting step of tumorigenesis...
December 2016: Trends in Cancer
https://www.readbyqxmd.com/read/28630930/real-time-quantitative-analysis-of-metabolic-flux-in-live-cells-using-a-hyperpolarized-micromagnetic-resonance-spectrometer
#12
Sangmoo Jeong, Roozbeh Eskandari, Sun Mi Park, Julio Alvarez, Sui Seng Tee, Ralph Weissleder, Michael G Kharas, Hakho Lee, Kayvan R Keshari
Metabolic reprogramming is widely considered a hallmark of cancer, and understanding metabolic dynamics described by the conversion rates or "fluxes" of metabolites can shed light onto biological processes of tumorigenesis and response to therapy. For real-time analysis of metabolic flux in intact cells or organisms, magnetic resonance (MR) spectroscopy and imaging methods have been developed in conjunction with hyperpolarization of nuclear spins. These approaches enable noninvasive monitoring of tumor progression and treatment efficacy and are being tested in multiple clinical trials...
June 2017: Science Advances
https://www.readbyqxmd.com/read/28630068/ehrlichia-chaffeensis-trp120-moonlights-as-a-hect-e3-ligase-involved-in-self-and-host-ubiquitination-to-influence-protein-interactions-and-stability-for-intracellular-survival
#13
Bing Zhu, Seema Das, Shubhajit Mitra, Tierra R Farris, Jere W McBride
Ehrlichia chaffeensis secretes tandem repeat protein (TRP) effectors that are involved in a diverse array of host cell interactions, some of which directly activate cell signaling pathways, and reprogram host gene transcription to promote survival in the mononuclear phagocyte. However, the molecular details of these effector-host interactions and roles in pathobiology are incompletely understood. In this study, we determined that the E. chaffeensis effector, TRP120, is post-translationally modified by ubiquitin (Ub), and ubiquitination occurs through intrinsic and host-mediated HECT ligase activity...
June 19, 2017: Infection and Immunity
https://www.readbyqxmd.com/read/28630023/epigenetics-of-pheochromocytoma-and-paraganglioma
#14
REVIEW
Peyman Björklund, Samuel Backman
Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors arising in the medullae of the adrenal glands or in paraganglia. The knowledge of the tumor biology of these lesions has increased dramatically during the past two decades and more than a dozen recurrently mutated genes have been identified. Different clusters have been described that share epigenetic signatures. Mutations in the succinate dehydrogenase complex subunit genes play a pivotal role in reprogramming the epigenetic state of these tumors by inhibiting epigenetic regulators such as TET enzymes and histone demethylases...
June 16, 2017: Molecular and Cellular Endocrinology
https://www.readbyqxmd.com/read/28629307/tumor-reversion-mesenchymal-epithelial-transition-as-a-critical-step-in-managing-the-tumor-microenvironment-cross-talk
#15
Mariano Bizzarri, Alessandra Cucina, Sara Proietti
Tumour reversion represents a promising field of investigation. The occurrence of cancer reversion both in vitro and in vivo has been ascertained by an increasing number of reports. The reverting process may be triggered in a wide range of different cancer types by both molecular and physical cues. This process encompasses mandatorily a change in the cell-stroma interactions, leading to profound modification in tissue architecture. Indeed, cancer reversion may be obtained by only resetting the overall burden of biophysical cues acting on the cell-stroma system, thus indicating that conformational changes induced by cell shape and cytoskeleton remodelling trigger downstream the cascade of molecular events required for phenotypic reversion...
June 8, 2017: Current Pharmaceutical Design
https://www.readbyqxmd.com/read/28627410/current-and-upcoming-mitochondrial-targets-for-cancer-therapy
#16
REVIEW
Hyoung Kyu Kim, Yeon Hee Noh, Bernd Nilius, Kyung Soo Ko, Byoung Doo Rhee, Nari Kim, Jin Han
Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer...
June 13, 2017: Seminars in Cancer Biology
https://www.readbyqxmd.com/read/28627365/mitochondria-metabolic-reprogramming-in-the-formation-of-neurons-from-peripheral-cells-cause-or-consequence-and-the-implications-to-their-utility
#17
REVIEW
Gary E Gibson, Ankita Thakkar
The induction of pluripotent stem cells (iPSC) from differentiated cells such as fibroblasts and their subsequent conversion to neural progenitor cells (NPC) and finally to neurons is intriguing scientifically, and its potential to medicine nearly infinite, but unrealized. A better understanding of the changes at each step of the transformation will enable investigators to use them better to model neurological disease. Each step of conversion from a differentiated cell to an iPSC to a NPC to neurons requires large changes in glycolysis including aerobic glycolysis, the pentose shunt, the tricarboxylic acid cycle, the electron transport chain and in the production of reactive oxygen species (ROS)...
June 13, 2017: Neurochemistry International
https://www.readbyqxmd.com/read/28626459/the-immunogenicity-and-immune-tolerance-of-pluripotent-stem-cell-derivatives
#18
REVIEW
Xin Liu, Wenjuan Li, Xuemei Fu, Yang Xu
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all cell types in human body, and therefore hold great potential for cell therapy of currently incurable diseases including neural degenerative diseases, heart failure, and macular degeneration. This potential is further underscored by the promising safety and efficacy data from the ongoing clinical trials of hESC-based therapy of macular degeneration. However, one main challenge for the clinical application of hESC-based therapy is the allogeneic immune rejection of hESC-derived cells by the recipient...
2017: Frontiers in Immunology
https://www.readbyqxmd.com/read/28626065/metabolic-reprogramming-commits-differentiation-of-human-cd27-igd-b-cells-to-plasmablasts-or-cd27-igd-cells
#19
Masataka Torigoe, Shigeru Iwata, Shingo Nakayamada, Kei Sakata, Mingzeng Zhang, Maiko Hajime, Yusuke Miyazaki, Manabu Narisawa, Koji Ishii, Hirotaka Shibata, Yoshiya Tanaka
B cells play a crucial role in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE). However, the relevance of the metabolic pathway in the differentiation of human B cell subsets remains unknown. In this article, we show that the combination of CpG/TLR9 and IFN-α markedly induced the differentiation of CD27(+)IgD(+) unswitched memory B cells into CD27(hi)CD38(hi) plasmablasts. The response was accompanied by mammalian target of rapamycin complex 1 (mTORC1) activation and increased lactate production, indicating a shift to glycolysis...
June 16, 2017: Journal of Immunology: Official Journal of the American Association of Immunologists
https://www.readbyqxmd.com/read/28626034/drug-induced-epigenetic-reprogramming-promotes-drug-resistance
#20
(no author information available yet)
Drug treatment causes resistance in cells with transiently high expression of drug resistance markers.
June 16, 2017: Cancer Discovery
keyword
keyword
12959
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"