Read by QxMD icon Read

Pentose Phosphate Pathway

Shan Wei, Yanan Liu, Meiling Wu, Tiantai Ma, Xiangzheng Bai, Jin Hou, Yu Shen, Xiaoming Bao
Background: The recombinant Saccharomyces cerevisiae strains that acquired the ability to utilize xylose through metabolic and evolutionary engineering exhibit good performance when xylose is the sole carbon source in the medium (designated the X stage in the present work). However, the xylose consumption rate of strains is generally low after glucose depletion during glucose-xylose co-fermentation, despite the presence of xylose in the medium (designated the GX stage in the present work)...
2018: Biotechnology for Biofuels
Daniela Catanzaro, Silvia Nicolosi, Veronica Cocetta, Marika Salvalaio, Andrea Pagetta, Eugenio Ragazzi, Monica Montopoli, Gianfranco Pasut
Ovarian cancer is an aggressive and lethal cancer usually treated by cytoreductive surgery followed by chemotherapy. Unfortunately, after an initial response, many patients relapse owing mainly to the development of resistance against the standard chemotherapy regime, carboplatin/paclitaxel, which is also affected by heavy side effects. In view to addressing such issues here, an association of liposomal cisplatin with 6-amino nicotinamide is investigated. It is known that resistant cells increase their demand for glucose, which is partially redirected toward the pentose phosphate pathway (PPP)...
March 30, 2018: Oncotarget
Junjeong Choi, Eun-Sol Kim, Ja Seung Koo
Purpose: The purpose of this study was to assess the expression of pentose phosphate pathway- (PPP-) related proteins and their significance in clinicopathologic factors of breast cancer. Methods: Immunohistochemical staining for PPP-related proteins (glucose-6-phosphate dehydrogenase [G6PDH], 6-phosphogluconolactonase [6PGL], 6-phosphogluconate dehydrogenase [6PGDH], and nuclear factor-erythroid 2-related factor 2 [NRF2]) was performed using tissue microarray (TMA) of 348 breast cancers...
2018: Disease Markers
André Kleinridders, Heather A Ferris, Michelle L Reyzer, Michaela Rath, Marion Soto, M Lisa Manier, Jeffrey Spraggins, Zhihong Yang, Robert C Stanton, Richard M Caprioli, C Ronald Kahn
OBJECTIVE: Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS)...
April 6, 2018: Molecular Metabolism
Jeroen Girwar Koendjbiharie, Kilian Wiersma, Richard van Kranenburg
Clostridium thermosuccinogenes is a thermophilic anaerobic bacterium able to convert various carbohydrates to succinate and acetate as main fermentation products. Genomes of the four publicly available strains have been sequenced and the genome of the type-strain has been closed. The annotated genomes were used to reconstruct the central metabolism, and enzyme assays were used to validate annotations and to determine co-factor specificity. Genes for the pathways to all fermentation products were identified, as well as for the Embden-Meyerhof-Parnas pathway, and the pentose phosphate pathway...
April 20, 2018: Applied and Environmental Microbiology
Erick Armingol, Eduardo Tobar, Ricardo Cabrera
It has been proposed that NADP+-specificity of isocitrate dehydrogenase (ICDH) evolved as an adaptation of microorganisms to grow on acetate as the sole source of carbon and energy. In Escherichia coli, changing the cofactor specificity of ICDH from NADP+ to NAD+ (cofactor swapping) decreases the growth rate on acetate. However, the metabolic basis of this phenotype has not been analyzed. In this work, we used constraint-based modeling to investigate the effect of the cofactor swapping of ICDH in terms of energy production, response of alternative sources of NADPH, and partitioning of fluxes between ICDH and isocitrate lyase (ICL) -a crucial bifurcation when the bacterium grows on acetate-...
2018: PloS One
Miao Liu, Lingpu Liu, Shiru Jia, Siqi Li, Yang Zou, Cheng Zhong
Complete genome sequence of Gluconacetobacter xylinus CGMCC 2955 for fine control of bacterial cellulose (BC) synthesis is presented here. The genome, at 3,563,314 bp, was found to contain 3,193 predicted genes without gaps. There are four BC synthase operons (bcs), among which only bcsI is structurally complete, comprising bcsA, bcsB, bcsC, and bcsD. Genes encoding key enzymes in glycolytic, pentose phosphate, and BC biosynthetic pathways and in the tricarboxylic acid cycle were identified. G. xylinus CGMCC 2955 has a complete glycolytic pathway because sequence data analysis revealed that this strain possesses a phosphofructokinase (pfk)-encoding gene, which is absent in most BC-producing strains...
April 19, 2018: Scientific Reports
Dipayan Sarkar, Chandrakant Ankolekar, Duane Greene, Kalidas Shetty
Superficial scald during post-harvest storage is a serious problem for long-term preservation and shelf-life of some apple and pear cultivars. Development of superficial scald and related physiological disorders such as enzymatic and non-enzymatic browning are associated in part with oxidative breakdown and redox imbalance. Therefore, targeting natural antioxidants from food-grade sources as post-harvest treatment to reduce superficial scald has merit. Such natural antioxidants can potentially counter oxidation-linked damages associated with superficial scald through stimulation of antioxidant enzyme responses and biosynthesis of less-oxidized phenolics involving protective redox-linked pathway such as proline-associated pentose phosphate pathway...
May 2018: Journal of Food Science and Technology
Jun-Hong Yang, Yu-Lin Jiang, Yi-Feng Liu, Zhi-Qian Zhang, Chang-Li Zhong, Nian Wang, Fei-Hu Ji, Qian-Ni Jin, Xiang-Sen Ye, Ting-Mei Chen
OBJECTIVE: To investigate the differences of metabolic pathways of leucocyte-deplated RBCs prepared by using lipid whole blood and nomal blood during routine storage so as to provide some reference for clinical blood use. METHODS: Twenty U whole blood from 20 donors, including 10 U lipid blood and 10 U normal whole blood, were selected for preparing leukodepleted red blood cells, red blood cells were taken from storage bags on day 0, 14 and 35, respectively. Metabolites in the red blood cells were analyzed, red blood cell metabolic extracts were detected by UPLC-MS/MS...
April 2018: Zhongguo Shi Yan Xue Ye Xue za Zhi
Yong Zhou, Zhiyun Meng, Hui Gan, Ying Zheng, Xiaoxia Zhu, Zhuona Wu, Jian Li, Ruolan Gu, Guifang Dou
Red blood cells (RBCs) are routinely stored for 35 to 42 days in most countries. During storage, RBCs undergo biochemical and biophysical changes known as RBC storage lesion, which is influenced by alternative storage additive solutions (ASs). Metabolomic studies have been completed on RBCs stored in a number of ASs, including SAGM, AS-1, AS-3, AS-5, AS-7, PAGGGM, and MAP. However, the reported metabolome analysis of laboratory-made MAP-stored RBCs was mainly focused on the time-dependent alterations in glycolytic intermediates during storage...
April 16, 2018: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
York Kamenisch, Irina Ivanova, Konstantin Drexler, Mark Berneburg
Ultraviolet (UV) radiation has a plethora of effects on human tissues. In the UV spectrum, wavelengths above 320nm fall into the UVA-range and for these it has been shown that they induce reactive oxygen species (ROS), DNA mutations and are capable to induce melanoma in mice. In addition to this it was recently shown that UVA irradiation and UVA-induced ROS also increase glucose metabolism of melanoma cells. UVA irradiation causes a persistent increase in glucose consumption, accompanied by increased glycolysis, increased lactic acid production and activation of the pentose phosphate pathway...
April 15, 2018: Experimental Dermatology
Xili Liang, Chao Sun, Bosheng Chen, Kaiqian Du, Ting Yu, Vijitra Luang-In, Xingmeng Lu, Yongqi Shao
Insects constitute the most abundant and diverse animal class and act as hosts to an extraordinary variety of symbiotic microorganisms. These microbes living inside the insects play critical roles in host biology and are also valuable bioresources. Enterococcus mundtii EMB156, isolated from the larval gut (gut pH >10) of the model organism Bombyx mori (Lepidoptera: Bombycidae), efficiently produces lactic acid, an important metabolite for industrial production of bioplastic materials. E. mundtii EMB156 grows well under alkaline conditions and stably converts various carbon sources into lactic acid, offering advantages in downstream fermentative processes...
April 7, 2018: Applied Microbiology and Biotechnology
Angelo D'Alessandro, Julie A Reisz, Rachel Culp-Hill, Herbert Korsten, Robin van Bruggen, Dirk de Korte
BACKGROUND: Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date...
April 6, 2018: Transfusion
Quanzhou Feng, Z Lewis Liu, Scott A Weber, Shizhong Li
Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative expression analysis revealed outstanding high levels of constitutive expression of YXI, a synthesized yeast codon-optimized xylose isomerase gene integrated into chromosome XV of strain Y-50463...
2018: PloS One
Walid S Habashy, Marie C Milfort, Romdhane Rekaya, Samuel E Aggrey
Heat stress causes critical molecular dysfunction that affects productivity in chickens. Thus, the purpose of this study was to evaluate the effect of heat stress (HS) on the expression of select genes in the oxidation/antioxidation machinery in the liver of chickens. Chickens at 14 days of age were randomly assigned to two treatment groups and kept under either a constant normal temperature (25 °C) or high temperature (35 °C) in individual cages for 12 days. mRNA expression of Nrf2, oxidants NADPH(NOX): [NOX1, NOX2, NOX3, NOX4, NOX5 and DUOX2], and antioxidants [SOD1, CAT, GR, GPx1, NQO1] in the liver were analyzed at 1 and 12 days post-HS...
April 4, 2018: Molecular Biology Reports
Xiao Qian, Yuan Zhang, Desmond S Lun, G Charles Dismukes
Boosting cellular growth rates while redirecting metabolism to make desired products are the preeminent goals sought by gene engineering of photoautotrophs, yet so far has under achieved owing to lack of understanding of the functional pathways and their choke points. Here we apply a 13C mass isotopic method (INST-MFA) to quantify instantaneous fluxes of metabolites during photoautotrophic growth. INST-MFA determines the globally most accurate set of absolute fluxes for each metabolite from a finite set of measured 13C-isotopomer fluxes by minimizing the sum of squared residuals between experimental and predicted mass isotopomers...
April 4, 2018: ACS Synthetic Biology
Subhamoy Dasgupta, Kimal Rajapakshe, Bokai Zhu, Bryan C Nikolai, Ping Yi, Nagireddy Putluri, Jong Min Choi, Sung Y Jung, Cristian Coarfa, Thomas F Westbrook, Xiang H-F Zhang, Charles E Foulds, Sophia Y Tsai, Ming-Jer Tsai, Bert W O'Malley
Alterations in both cell metabolism and transcriptional programs are hallmarks of cancer that sustain rapid proliferation and metastasis1 . However, the mechanisms that control the interaction between metabolic reprogramming and transcriptional regulation remain unclear. Here we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) regulates transcriptional reprogramming by activating the oncogenic steroid receptor coactivator-3 (SRC-3). We used a kinome-wide RNA interference-based screening method to identify potential kinases that modulate the intrinsic SRC-3 transcriptional response...
April 3, 2018: Nature
Joe T Sharick, Peter F Favreau, Amani A Gillette, Sophia M Sdao, Matthew J Merrins, Melissa C Skala
While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells...
April 3, 2018: Scientific Reports
Hiroto Hatakeyama, Takuya Fujiwara, Hiromi Sato, Ayu Terui, Akihiro Hisaka
Acquired resistance to sunitinib is a challenge in the treatment of renal cell carcinoma (RCC). The dysregulation of cellular metabolism is prevalent during resistance acquisition. It is known that in sunitinib-resistant RCC 786-O (786-O Res) cells sunitinib is mainly sequestered in the intracellular lysosomes. However, the relevance between sunitinib resistance and cellular metabolism has not been examined. In this study, we examined the metabolic changes in 786-O Res by using capillary electrophoresis-time of flight mass spectrometry...
2018: Biological & Pharmaceutical Bulletin
Jie Yin, Wenkai Ren, Shuai Chen, Yuying Li, Hui Han, Jing Gao, Gang Liu, Xin Wu, Tiejun Li, Sung Woo Kim, Yulong Yin
Although the effects of dietary methionine restriction have been investigated in the physiology of aging and diseases related to oxidative stress, the relationship between methionine restriction and the development of metabolic disorders has not been explored extensively. This review summarizes studies of the possible involvement of dietary methionine restriction in improving insulin resistance, glucose homeostasis, oxidative stress, lipid metabolism, the pentose phosphate pathway, and inflammation, with an emphasis on the fibroblast growth factor 21 and protein phosphatase 2A signals and autophagy in diabetes...
March 30, 2018: Molecular Nutrition & Food Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"