Read by QxMD icon Read

Pentose Phosphate Pathway

Whitney D Hollinshead, Sarah Rodriguez, Hector Garcia Martin, George Wang, Edward E K Baidoo, Kenneth L Sale, Jay D Keasling, Aindrila Mukhopadhyay, Yinjie J Tang
BACKGROUND: Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps than either the Embden-Meyerhof-Parnas pathway (EMPP) or the oxidative pentose phosphate pathway (OPPP). However, Escherichia coli do not use their native EDP for glucose metabolism. RESULTS: Overexpression of edd and eda in E...
2016: Biotechnology for Biofuels
Netanya Y Spencer, Robert C Stanton
PURPOSE OF REVIEW: Glucose 6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. G6PD is the main source of the essential cellular reductant, NADPH. The purpose of this review is to describe the biochemistry of G6PD and NADPH, cellular factors that regulate G6PD, normal physiologic roles of G6PD, and the pathogenic role altered G6PD/NADPH plays in kidney disease. RECENT FINDINGS: NADPH is required for many essential cellular processes such as the antioxidant system, nitric oxide synthase, cytochrome p450 enzymes, and NADPH oxidase...
October 15, 2016: Current Opinion in Nephrology and Hypertension
Derong Lin, Mengshi Xiao, Jingjing Zhao, Zhuohao Li, Baoshan Xing, Xindan Li, Maozhu Kong, Liangyu Li, Qing Zhang, Yaowen Liu, Hong Chen, Wen Qin, Hejun Wu, Saiyan Chen
In this paper, the biosynthesis process of phenolic compounds in plants is summarized, which include the shikimate, pentose phosphate and phenylpropanoid pathways. Plant phenolic compounds can act as antioxidants, structural polymers (lignin), attractants (flavonoids and carotenoids), UV screens (flavonoids), signal compounds (salicylic acid, flavonoids) and defense response chemicals (tannins, phytoalexins). From a human physiological standpoint, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, antioxidant and anti-proliferative activities...
October 15, 2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Raquel Guimarães Coelho, Juliana de Menezes Cazarin, João Paulo Albuquerque Cavalcanti de Albuquerque, Bruno Moulin de Andrade, Denise P Carvalho
Acceleration of glycolysis is a characteristic of neoplasia. Previous studies have shown that a metabolic shift occurs in many tumors and correlates with a negative prognosis. The present study aimed to investigate the glycolytic profile of thyroid carcinoma cell lines. We investigated glycolytic and oxidative parameters of two thyroid carcinoma papillary cell lines (BCPAP and TPC1) and the non-tumor cell line NTHY-ori. All carcinoma cell lines showed higher rates of glycolysis efficiency, when compared to NTHY-ori, as assessed by a higher rate of glucose consumption and lactate production...
October 4, 2016: Oncology Reports
Jessica Brandi, Ilaria Dando, Elisa Dalla Pozza, Giulia Biondani, Rosalind Jenkins, Victoria Elliott, Kevin Park, Giuseppina Fanelli, Lello Zolla, Eithne Costello, Aldo Scarpa, Daniela Cecconi, Marta Palmieri
: Recently, we have shown that the secretome of pancreatic cancer stem cells (CSCs) is characterized by proteins that participate in cancer differentiation, invasion, and metastasis. However, the differentially expressed intracellular proteins that lead to the specific characteristics of pancreatic CSCs have not yet been identified, and as a consequence the deranged metabolic pathways are yet to be elucidated. To identify the modulated proteins of pancreatic CSCs, iTRAQ-based proteomic analysis was performed to compare the proteome of Panc1 CSCs and Panc1 parental cells, identifying 230 modulated proteins...
October 13, 2016: Journal of Proteomics
Peng-Fei Xia, Guo-Chang Zhang, Berkley Walker, Seung-Oh Seo, Suryang Kwak, Jingjing Liu, Heejin Kim, Donald Ort, Shu-Guang Wang, Yong-Su Jin
Global climate change caused by the emission of anthropogenic greenhouse gasses (GHGs) is a grand challenge to humanity. To alleviate the trend, the consumption of fossil fuels needs to be largely reduced and alternative energy technologies capable of controlling GHG emissions are anticipated. In this study, we introduced a synthetic reductive pentose phosphate pathway (rPPP) into a xylose-fermenting Saccharomyces cerevisiae strain SR8 to achieve simultaneous lignocellulosic bioethanol production and carbon dioxide recycling...
October 17, 2016: ACS Synthetic Biology
Jeemeng Lao, Andreia M Smith-Moritz, Jennifer C Mortimer, Joshua L Heazlewood
The cytosol is at the core of cellular metabolism and contains many important metabolic pathways, including glycolysis, gluconeogenesis, and the pentose phosphate pathway. Despite the importance of this matrix, few attempts have sought to specifically enrich this compartment from plants. Although a variety of biochemical pathways and signaling cascades pass through the cytosol, much of the focus has usually been targeted at the reactions that occur within membrane-bound organelles of the plant cell. In this chapter, we outline a method for the enrichment of the cytosol from rice suspension cell cultures which includes sample preparation and enrichment as well as validation using immunoblotting and fluorescence-tagged proteins...
2017: Methods in Molecular Biology
Masatoshi Kubota, Reiko Watanabe, Miki Yamaguchi, Michihiro Hosojima, Akihiko Saito, Mikio Fujii, Shinobu Fujimura, Motoni Kadowaki
We previously reported that rice endosperm protein (REP) has renoprotective effects in Goto-Kakizaki rats, a non-obese diabetic model. However, whether these effects occur in obese diabetes remains unclear. This study aimed to clarify the effects of REP on obese diabetes, especially on fatty liver and diabetic nephropathy, using the obese diabetic model Zucker diabetic fatty (ZDF) rats. In total, 7-week-old male ZDF rats were fed diets containing 20 % REP or casein (C) for 8 weeks. Changes in fasting blood glucose levels and urinary markers were monitored during the experimental period...
October 2016: British Journal of Nutrition
Robert R Brubaker
This chapter outlines the physiology of Yersinia pestis with emphasis on identifying unique functions required for tissue invasion and acute disease. These activities are opposed to often incompatible processes expressed by very closely related Yersinia pseudotuberculosis, which causes localized gastrointestinal infection. Gain of new information in Y. pestis entailed lateral transfer of plasminogen activator and anti-phagocytic capsular antigen via the plasmids pPCP and pMT, respectively, and derepression of the pigmentation locus facilitating colonization of the flea vector...
2016: Advances in Experimental Medicine and Biology
Zahra Gerivani, Elham Vashaee, Hamid Reza Sadeghipour, Mahnaz Aghdasi, Zahra-Sadat Shobbar, Majid Azimmohseni
Tree seed dormancy release by cold stratification accompanies with the embryo increased gluconeogenesis competence. Cyanide also breaks seed dormancy however, integrated information about its effects on carbon metabolism is lacking. Accordingly, the impacts of HCN on germination, lipid gluconeogenesis and sugar transport capacity of walnut (Juglans regia L.) kernels were investigated during 10-days period prior to radicle protrusion. HCN increased walnut kernel germination and within four days of kernel incubation, hastened the decline of starch, reducing and non-reducing sugars and led to greater activities of alkaline invertase and glucose-6-phosphate dehydrogenase...
November 2016: Plant Science: An International Journal of Experimental Plant Biology
Yang Xiao, Mandy Kwong, Anneleen Daemen, Marcia Belvin, Xiaorong Liang, Georgia Hatzivassiliou, Thomas O'Brien
Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner...
2016: PloS One
Han Liu, Bosheng Chen, Sirui Hu, Xili Liang, Xingmeng Lu, Yongqi Shao
The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gut pH > 10.5), which is a key developmental turning point from dormant state to infected state. However, to date this process remains poorly understood due to the complexity of the animal digestive tract and the lack of genetic tools for microsporidia...
2016: Frontiers in Microbiology
María M Adeva-Andany, Noemi Pérez-Felpete, Carlos Fernández-Fernández, Cristóbal Donapetry-García, Cristina Pazos-García
Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways...
October 5, 2016: Bioscience Reports
Tetsuji Moriyama, Shu Tanaka, Yasumune Nakayama, Masahiro Fukumoto, Kenji Tsujimura, Kohji Yamada, Takeshi Bamba, Yoshihiro Yoneda, Eiichiro Fukusaki, Masahiro Oka
Transaldolase 1 (TALDO1) is a rate-limiting enzyme involved in the pentose phosphate pathway, which is traditionally thought to occur in the cytoplasm. In this study, we found that the gene TALDO1 has two translational initiation sites, generating two isoforms that differ by the presence of the first 10 N-terminal amino acids. Notably, the long and short isoforms were differentially localised to the cell nucleus and cytoplasm, respectively. Pull-down and in vitro transport assays showed that the long isoform, unlike the short one, binds to importin α and is actively transported into the nucleus in an importin α/β-dependent manner, demonstrating that the 10 N-terminal amino acids are essential for its nuclear localisation...
October 5, 2016: Scientific Reports
Pedro Cisternas, Paulina Salazar, Carmen Silva-Alvarez, L Felipe Barros, Nibaldo C Inestrosa
The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer`s disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism...
October 4, 2016: Journal of Biological Chemistry
I S Haslam, L Jadkauskaite, Imre Lőrinc Szabó, S Staege, J Hesebeck-Brinckmann, G Jenkins, R Bhogal, F L Lim, N Farjo, B Farjo, T Bíró, M Schäfer, R Paus
The in situ control of redox insult in human organs is of major clinical relevance, yet remains incompletely understood. Activation of Nrf2, the "master regulator" of genes controlling cellular redox homeostasis, is advocated as a therapeutic strategy for diseases with severely impaired redox balance. It remains to be shown whether this strategy is effective in human organs, rather than isolated human cell types. We have therefore explored the role of Nrf2 in a uniquely accessible human (mini-) organ, human scalp hair follicles (HFs)...
October 1, 2016: Journal of Investigative Dermatology
Wenqin Bai, Yi-Shu Tai, Jingyu Wang, Jilong Wang, Pooja Jambunathan, Kevin J Fox, Kechun Zhang
Dicarboxylic acids are attractive biosynthetic targets due to their broad applications and their challenging manufacturing process from fossil fuel feedstock. Mesaconate is a branched, unsaturated dicarboxylic acid that can be used as a co-monomer to produce hydrogels and fire-retardant materials. In this study, we engineered nonphosphorylative metabolism to produce mesaconate from d-xylose and l-arabinose. This nonphosphorylative metabolism is orthogonal to the intrinsic pentose metabolism in Escherichia coli and has fewer enzymatic steps and a higher theoretical yield to TCA cycle intermediates than the pentose phosphate pathway...
September 30, 2016: Metabolic Engineering
E-Bin Gao, Youhua Huang, Degang Ning
Cyanophages, a group of viruses specifically infecting cyanobacteria, are genetically diverse and extensively abundant in water environments. As a result of selective pressure, cyanophages often acquire a range of metabolic genes from host genomes. The host-derived genes make a significant contribution to the ecological success of cyanophages. In this review, we summarize the host-derived metabolic genes, as well as their origin and roles in cyanophage evolution and important host metabolic pathways, such as the light-dependent reactions of photosynthesis, the pentose phosphate pathway, nutrient acquisition and nucleotide biosynthesis...
2016: Genes
Pedro Cisternas, Paulina Salazar, Carmen Silva-Álvarez, L Felipe Barros, Nibaldo C Inestrosa
In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters...
2016: Neural Plasticity
Haiyan Chu, Mary M McKenna, Nathan A Krump, Suilan Zheng, Laurel Mendelsohn, Swee Lay Thein, Lisa J Garrett, David M Bodine, Philip S Low
Functional studies have shown that the oxygenation state of the erythrocyte regulates many important pathways, including glucose metabolism, membrane mechanical stability and cellular ATP release. Deoxyhemoglobin, but not oxyhemoglobin, binds avidly and reversibly to band 3, the major erythrocyte membrane protein. Because band 3 associates with multiple metabolic, solute transport, signal transduction and structural proteins, the hypothesis naturally arises that the O2-dependent regulation of erythrocyte properties might be mediated by the reversible association of deoxyHb with band 3...
September 29, 2016: Blood
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"