Read by QxMD icon Read

Glial cells missing

Ming Zhang, Sribalasubashini Muralimanoharan, Alison C Wortman, Carole R Mendelson
Dysregulation of human trophoblast invasion and differentiation can result in preeclampsia (PE), a hypertensive disorder of pregnancy with significant morbidity and mortality for mother and offspring. miRNA microarray analysis of RNA from human cytotrophoblasts (CytT), before and after differentiation to syncytiotrophoblast (SynT) in primary culture, revealed that members of miR-515 family-including miR-515-5p, miR-519e-5p, miR-519c-3p, and miR-518f, belonging to the primate- and placenta-specific chromosome 19 miRNA cluster (C19MC)-were significantly down-regulated upon human SynT differentiation...
October 24, 2016: Proceedings of the National Academy of Sciences of the United States of America
Geoffrey N Hendy, Lucie Canaff
The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5'-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2-7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes-promoter methylation of the GC-rich P2 promoter, histone acetylation-as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression...
2016: Frontiers in Physiology
Animesh Alexander Raha, James W Henderson, Simon R W Stott, Romina Vuono, Simona Foscarin, Robert P Friedland, Shahid H Zaman, Ruma Raha-Chowdhury
Neuroinflammation and activation of innate immunity are early events in neurodegenerative diseases including Alzheimer's disease (AD). Recently, a rare mutation in the gene Triggering receptor expressed on myeloid cells 2 (TREM2) has been associated with a substantial increase in the risk of developing late onset AD. To uncover the molecular mechanisms underlying this association, we investigated the RNA and protein expression of TREM2 in APP/PS1 transgenic mice. Our findings suggest that TREM2 not only plays a critical role in inflammation, but is also involved in neuronal cell survival and in neurogenesis...
September 20, 2016: Journal of Alzheimer's Disease: JAD
Marco Magistri, Nathalie Khoury, Emilia Maria Cristina Mazza, Dmitry Velmeshev, Jae K Lee, Silvio Bicciato, Pantelis Tsoulfas, Mohammad Ali Faghihi
Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing...
November 2016: European Journal of Neuroscience
Xiaoyin Lu, Yuxia He, Cheng Zhu, Hongmei Wang, Shiling Chen, Hai-Yan Lin
INTRODUCTION: The multinucleated syncytiotrophoblast (STB) is maintained and regenerated by the fusion of underlying cytotrophoblast cells (CTBs) and is responsible for a number of functions in the human placenta. Deficiencies in this structure may result in pregnancy-associated diseases. However, the detailed mechanisms underlying trophoblast syncytialization await further investigation. METHODS: The location of the transcription factor Twist1 in human placental tissues was identified by immunohistochemistry...
March 2016: Placenta
Jing Xu, Tharini Sivasubramaniyam, Yoav Yinon, Andrea Tagliaferro, Jocelyn Ray, Ori Nevo, Martin Post, Isabella Caniggia
TGFβ has been implicated in preeclampsia, but its intracellular signaling via phosphorylated mothers against decapentaplegic (SMADs) and SMAD-independent proteins in the placenta remains elusive. Here we show that TGFβ receptor-regulated SMAD2 was activated (Ser(465/467) phosphorylation) in syncytiotrophoblast and proliferating extravillous trophoblast cells of first-trimester placenta, whereas inhibitory SMAD7 located primarily to cytotrophoblast cells. SMAD2 phosphorylation decreased with advancing gestation, whereas SMAD7 expression increased and shifted to syncytiotrophoblasts toward term...
February 2016: Endocrinology
Mei-Leng Cheong, Liang-Jie Wang, Pei-Yun Chuang, Ching-Wen Chang, Yun-Shien Lee, Hsiao-Fan Lo, Ming-Song Tsai, Hungwen Chen
Human chorionic gonadotropin (hCG) is composed of a common α subunit and a placenta-specific β subunit. Importantly, hCG is highly expressed in the differentiated and multinucleated syncytiotrophoblast, which is formed via trophoblast cell fusion and stimulated by cyclic AMP (cAMP). Although the ubiquitous activating protein 2 (AP2) transcription factors TFAP2A and TFAP2C may regulate hCGβ expression, it remains unclear how cAMP stimulates placenta-specific hCGβ gene expression and trophoblastic differentiation...
January 1, 2016: Molecular and Cellular Biology
M A Aleksandrova, M V Marey
Brain stem cells represent an extremely intriguing phenomenon. The aim of our review is to present an integrity vision of their role in the brain of mammals and humans, and their clinical perspectives. Over last two decades, investigations of biology of the neural stem cells produced significant changes in general knowledge about the processes of development and functioning of the brain. Researches on the cellular and molecular mechanisms of NSC differentiation and behavior led to new understanding of their involvement in learning and memory...
May 2015: Zhurnal Vyssheĭ Nervnoĭ Deiatelnosti Imeni I P Pavlova
Karen S Wilcox, James M Gee, Meredith B Gibbons, Petr Tvrdik, John A White
Temporal lobe epilepsy (TLE) is a devastating seizure disorder that is often caused by status epilepticus (SE). Temporal lobe epilepsy can be very difficult to control with currently available antiseizure drugs, and there are currently no disease-modifying therapies that can prevent the development of TLE in those patients who are at risk. While the functional changes that occur in neurons following SE and leading to TLE have been well studied, only recently has research attention turned to the role in epileptogenesis of astrocytes, the other major cell type of the brain...
August 2015: Epilepsy & Behavior: E&B
Liping Li, Danny J Schust
BACKGROUND: The syncytialization of cytotrophoblast cells to syncytiotrophoblast is central to human placental transport and hormone production. Many techniques for in vitro study of this process have been proposed and new investigators to the field may find the literature in the field daunting. Here, we present a straightforward and reliable method to establish this important model using modern but readily available tools and reagents. METHODS: Villous cytotrophoblast cells are obtained from term placenta using mild enzymatic degradation, Percoll gradient centrifugation, negative magnetic cell sorting using an antibody against classical major histocompatibility complex molecules and in vitro culture on a matrix-coated growth surface...
2015: Reproductive Biology and Endocrinology: RB&E
Zendy Evelyn Olivo-Vidal, Roció Coutiño Rodríguez, Omar Arroyo-Helguera
Iodine deficiency is associated with oxidative stress increase and preeclampsia during gestation, suggesting that iodine concentration plays an important role in the normal placenta physiology. The question raised is to analyze the effect of iodine deficiency on oxidative stress, viability, differentiation, and migration process and changes in the expression of differentiation and migration markers. Iodine deprivation was done using potassium perchlorate (KCLO4) to block sodium iodide symporter (NIS) transporter and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid DIDS to inhibit pendrine (PEN) transport for 3-48 h...
February 2016: Biological Trace Element Research
Rachel Feldman-Goriachnik, Vitali Belzer, Menachem Hanani
Satellite glial cell (SGCs) in trigeminal and dorsal root ganglia are altered structurally and functionally under pathological conditions associated with chronic pain. These changes include reactive gliosis, augmented coupling by gap junctions, and increased responses to ATP via purinergic P2 receptors. Similar information for nodose ganglia (NG), which receive sensory inputs from internal organs via the vagus nerves, is missing. Here, we investigated changes in SGCs in mouse NG after the intraperitoneal administration of lipopolysaccharide (LPS), which induces systemic inflammation...
June 23, 2015: Glia
David Dzamba, Pavel Honsa, Martin Valny, Jan Kriska, Lukas Valihrach, Vendula Novosadova, Mikael Kubista, Miroslava Anderova
Cortical glial cells contain both ionotropic and metabotropic glutamate receptors. Despite several efforts, a comprehensive analysis of the entire family of glutamate receptors and their subunits present in glial cells is still missing. Here, we provide an overall picture of the gene expression of ionotropic (AMPA, kainate, NMDA) and the main metabotropic glutamate receptors in cortical glial cells isolated from GFAP/EGFP mice before and after focal cerebral ischemia. Employing single-cell RT-qPCR, we detected the expression of genes encoding subunits of glutamate receptors in GFAP/EGFP-positive (GFAP/EGFP(+)) glial cells in the cortex of young adult mice...
November 2015: Cellular and Molecular Neurobiology
Raymond W M Kwong, Steve F Perry
In vertebrates, parathyroid hormone (PTH) is important for skeletogenesis and Ca(2+) homeostasis. However, little is known about the molecular mechanisms by which PTH regulates skeleton formation and Ca(2+) balance during early development. Using larval zebrafish as an in vivo model system, we determined that PTH1 regulates the differentiation of epithelial cells and the development of craniofacial cartilage. We demonstrated that translational gene knockdown of PTH1 decreased Ca(2+) uptake at 4 days after fertilization...
July 2015: Endocrinology
Diego Sanchez, Raquel Bajo-Grañeras, Manuela Del Caño-Espinel, Rosa Garcia-Centeno, Nadia Garcia-Mateo, Raquel Pascua-Maestro, Maria D Ganfornina
A detailed knowledge of the mechanisms underlying brain aging is fundamental to understand its functional decline and the baseline upon which brain pathologies superimpose. Endogenous protective mechanisms must contribute to the adaptability and plasticity still present in the healthy aged brain. Apolipoprotein D (ApoD) is one of the few genes with a consistent and evolutionarily conserved up-regulation in the aged brain. ApoD protecting roles upon stress or injury are well known, but a study of the effects of ApoD expression in the normal aging process is still missing...
July 2015: Experimental Gerontology
H Škovierová, S Mahmood, E Blahovcová, J Hatok, J Lehotský, R Murín
Several neurodegenerative conditions, such as Alzheimer's disease and Parkinson's disease, or vascular dementia and cognitive impairment, are associated with mild hyperhomocysteinemia. Hyperhomocysteinemia is defined as an increase of the homocysteine (Hcy) level beyond 10 microM. Although the adverse effect of Hcy on neurons is well documented, knowledge about the impact of this amino acid on glial cells is missing. Therefore, with the aim to evaluate the neurotoxic properties of Hcy on glial cells, we used a glioblastoma cell line as a study model...
2015: Physiological Research
Benjamin Altenhein
Development and general organization of the nervous system is comparable between insects and vertebrates. Our current knowledge on the formation of neurogenic anlagen and the generation of neural stem cells is deeply influenced by work done in invertebrate model organisms such as Drosophila and Caenorhabditis elegans. It is the aim of this review to summarize the most important steps in neurogenesis in the Drosophila embryo with a special emphasis on glial cell progenitors and the specification of glial cells...
August 2015: Glia
Ori Eyal, Asaf Oren, Harald Jüppner, Raz Somech, Annamaria De Bellis, Michael Mannstadt, Auryan Szalat, Margalit Bleiberg, Yosef Weisman, Naomi Weintrob
UNLABELLED: Two siblings (a 15-year-old boy and an 11-year-old girl) who presented with hypocalcemic seizure at the age of 2 years and 2 months (boy) and 2 years and 4 months (girl) were diagnosed with hypoparathyroidism. At the age of 3 years, the girl developed central diabetes insipidus with good response to desmopressin acetate treatment. The family history was unremarkable, and there was no consanguinity between the parents. The father is of Iraqi/Egyptian Jewish origin and the mother is of Iranian/Romanian Jewish origin...
December 2014: European Journal of Pediatrics
Leonardo D'Agruma, Michela Coco, Vito Guarnieri, Claudia Battista, Lucie Canaff, Antonio S Salcuni, Sabrina Corbetta, Filomena Cetani, Salvatore Minisola, Iacopo Chiodini, Cristina Eller-Vainicher, Anna Spada, Claudio Marcocci, Giuseppe Guglielmi, Michele Zini, Rosanna Clemente, Betty Y L Wong, Danilo de Martino, Alfredo Scillitani, Geoffrey N Hendy, David E C Cole
CONTEXT: Glial cells missing-2 (GCM2) is key for parathyroid gland organogenesis. Its persistent expression in the adult parathyroid raises the possibility that overactive forms play a role in the evolution of parathyroid hyperactivity or tumorigenesis. A GCM2 c.844T → G; p.Y282D missense variant has been described within a transactivation inhibitory domain (amino acids 263-352). OBJECTIVE: The aims of the study were to 1) assess the frequency of Y282D in Italian primary hyperparathyroidism (PHPT) and control (C) populations, 2) test for association of 282D with PHPT and its phenotypic features, and 3) compare the transactivation potency of GCM2 282D relative to wild-type Y282...
December 2014: Journal of Clinical Endocrinology and Metabolism
Yuling Zhao, Matthew J Haney, Richa Gupta, John P Bohnsack, Zhijian He, Alexander V Kabanov, Elena V Batrakova
The pathobiology of Parkinson's disease (PD) is associated with the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) projecting to the striatum. Currently, there are no treatments that can halt or reverse the course of PD; only palliative therapies, such as replacement strategies for missing neurotransmitters, exist. Thus, the successful brain delivery of neurotrophic factors that promote neuronal survival and reverse the disease progression is crucial. We demonstrated earlier systemically administered autologous macrophages can deliver nanoformulated antioxidant, catalase, to the SNpc providing potent anti-inflammatory effects in PD mouse models...
2014: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"