Read by QxMD icon Read

Embryonic stem cell

Chongsheng He, Simone Sidoli, Robert Warneford-Thomson, Deirdre C Tatomer, Jeremy E Wilusz, Benjamin A Garcia, Roberto Bonasio
Interactions between noncoding RNAs and chromatin proteins play important roles in gene regulation, but the molecular details of most of these interactions are unknown. Using protein-RNA photocrosslinking and mass spectrometry on embryonic stem cell nuclei, we identified and mapped, at peptide resolution, the RNA-binding regions in ∼800 known and previously unknown RNA-binding proteins, many of which are transcriptional regulators and chromatin modifiers. In addition to known RNA-binding motifs, we detected several protein domains previously unknown to function in RNA recognition, as well as non-annotated and/or disordered regions, suggesting that many functional protein-RNA contacts remain unexplored...
October 20, 2016: Molecular Cell
Sarita Panula, Ahmed Reda, Jan-Bernd Stukenborg, Cyril Ramathal, Meena Sukhwani, Halima Albalushi, Daniel Edsgärd, Michiko Nakamura, Olle Söder, Kyle E Orwig, Shinya Yamanaka, Renee A Reijo Pera, Outi Hovatta
The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation...
2016: PloS One
Johan Kreuger, Paul O'Callaghan
Here we report on a technical difficulty we encountered while optimizing genotyping strategies to identify mice derived from Exoc3l2tm1a(KOMP)Wtsi embryonic stem cells obtained from the Knockout Mouse Project Repository. The Exoc3l2tm1a(KOMP)Wtsi construct encodes a "knockout-first" design with loxP sites that confer conditional potential (KO1st). We designed primers that targeted wild-type sequences flanking the most downstream element of the construct, an 80 base pair synthetic loxP region, which BLAST alignment analysis reveals is an element common to over 10,000 conditional gene-targeting mouse models...
2016: PloS One
Kerstin Reuter, Alexander Biehl, Laurena Koch, Volkhard Helms
Translation of mRNA sequences into proteins typically starts at an AUG triplet. In rare cases, translation may also start at alternative non-AUG codons located in the annotated 5' UTR which leads to an increased regulatory complexity. Since ribosome profiling detects translational start sites at the nucleotide level, the properties of these start sites can then be used for the statistical evaluation of functional open reading frames. We developed a linear regression approach to predict in-frame and out-of-frame translational start sites within the 5' UTR from mRNA sequence information together with their translation initiation confidence...
October 2016: PLoS Computational Biology
Celine L Bauwens, Derek Toms, Mark Ungrin
Cardiac differentiation of human pluripotent stems cells (hPSCs) is typically carried out in suspension cell aggregates. Conventional aggregate formation of hPSCs involves dissociating cell colonies into smaller clumps, with size control of the clumps crudely controlled by pipetting the cell suspension until the desired clump size is achieved. One of the main challenges of conventional aggregate-based cardiac differentiation of hPSCs is that culture heterogeneity and spatial disorganization lead to variable and inefficient cardiomyocyte yield...
September 25, 2016: Journal of Visualized Experiments: JoVE
Geeta Shroff
BACKGROUND: The expanded disability status scale (EDSS) is a validated and reliable tool to assess the extent of disabilities in patients with multiple sclerosis (MS). However, the use of this tool has been found to be limited in assessing various symptoms of MS that are important. Our study aimed at evaluating the efficacy of a new scoring system, reverse nutech functional score (RNFS) as compared to EDSS in assessing patients with MS treated with human embryonic stem cell (hESC) therapy...
December 2016: Clinical and Translational Medicine
Geeta Shroff, Dipin Thakur, Varun Dhingra, Deepak Singh Baroli, Deepanshu Khatri, Rahul Dev Gautam
BACKGROUND: The major complication faced by patients with chronic static spinal cord injury (SCI) is the loss of mobilization. With the aim to rehabilitate SCI patients, physiotherapy is performed worldwide. However, it only helps the patients to live with their disabilities. An interdisciplinary management involving human embryonic stem cell (hESC) therapy along with physiotherapy as a supportive therapy offers regenerative treatment of the patients with SCI. MAIN BODY: The present study focuses on the role of physiotherapy in the mobilization of patients with SCI (paraplegic 136; tetraplegics 90) undergoing hESC therapy...
December 2016: Clinical and Translational Medicine
Hui-Ju Tsai, Ching-Ping Tseng
Multiple functions of platelets in various physiological and pathological conditions have prompted considerable attention on understanding how platelets are generated and activated. Of the adaptor proteins that are expressed in megakaryocytes and platelets, Disabled-2 (Dab2) has been demonstrated in the past decades as a key regulator of platelet signaling. Dab2 has two alternative splicing isoforms p82 and p59. However, the mode of Dab2's action remains to be clearly defined. In this review, we highlight the current understanding of Dab2 expression and function in megakaryocytic differentiation, platelet activation and integrin signaling...
2016: Thrombosis Journal
Patrick Aghajanian, Shigeo Takashima, Manash Paul, Amelia Younossi-Hartenstein, Volker Hartenstein
The visceral musculature of the Drosophila intestine plays important roles in digestion as well as development. Detailed studies investigating the embryonic development of the visceral muscle exist; comparatively little is known about postembryonic development and metamorphosis of this tissue. In this study we have combined the use of specific markers with electron microscopy to follow the formation of the adult visceral musculature and its involvement in gut development during metamorphosis. Unlike the adult somatic musculature, which is derived from a pool of undifferentiated myoblasts, the visceral musculature of the adult is a direct descendant of the larval fibers, as shown by activating a lineage tracing construct in the larval muscle and obtaining labeled visceral fibers in the adult...
October 17, 2016: Developmental Biology
Catherine Rabouille, Jacqueline Deschamps
One hundred years of the Hubrecht Institute were celebrated in May 2016 with the organization of a one-day symposium "From embryos to stem cells" on the Uithof Campus, Utrecht, the Netherlands. Nine distinguished speakers were invited. They all represent a research branch originating from the passion of Institute founder, Ambrosius Hubrecht, for embryology:, regulation of gene expression, genome structure and function, embryonic and adult stem cells, nuclear reprogramming, and understanding cancer and other diseases using model organisms...
October 17, 2016: Developmental Biology
Rodrigo Lopes de Lima, Rosenilde Carvalho de Holanda Afonso, Vivaldo Moura Neto, Ana Maria Bolognese, Marcos Fabio Henriques Dos Santos, Margareth Maria Gomes de Souza
OBJECTIVE: This study was conducted to identify and characterize dental follicle stem cells (DFSCs) by analyzing expression of embryonic, mesenchymal and neural stem cells surface markers. Design Dental follicle cells (DFCs) were evaluated by immunocytochemistry using embryonic stem cells markers (OCT4 and SOX2), mesenchmal stem cells (MSCs) markers (Notch1, active Notch1, STRO, CD44, HLA-ABC, CD90), neural stem cells markers (Nestin and β-III-tubulin), neural crest stem cells (NCSCs) markers (p75 and HNK1) and a glial cells marker (GFAP)...
October 8, 2016: Archives of Oral Biology
Ido Sagi, Dieter Egli, Nissim Benvenisty
Haploid human pluripotent stem cells (PSCs) integrate haploidy and pluripotency, providing a novel system for functional genomics and developmental research in humans. We have recently derived haploid human embryonic stem cells (ESCs) by parthenogenesis and demonstrated their wide differentiation potential and applicability for genetic screening. Because haploid cells can spontaneously become diploid, their enrichment at an early passage is key for successful derivation. In this protocol, we describe two methodologies, namely metaphase spread analysis and cell sorting, for the identification of haploid human cells within parthenogenetic ESC lines...
November 2016: Nature Protocols
Zhong Liu, Cheng Zhang, Alireza Khodadadi-Jamayran, Lam Dang, Xiaosi Han, Kitai Kim, Hu Li, Rui Zhao
Neural stem cells (NSCs) have the capacity to differentiate into neurons, astrocytes, and oligodendrocytes, and therefore represent a promising donor tissue source for treating neurodegenerative diseases and repairing injuries of the nervous system. However, it remains unclear how canonical microRNAs (miRNAs), the subset of miRNAs requiring the Drosha-Dgcr8 microprocessor and the type III RNase Dicer for biogenesis, regulate NSCs. In this study, we established and characterized <i>Dgcr8</i><sup>-/-</sup> NSCs from conditionally <i>Dgcr8</i>-disrupted mouse embryonic brain...
October 20, 2016: Stem Cells and Development
Qingxi Zhang, Wanling Chen, Sheng Tan, Tongxiang Lin
Parkinson's disease (PD) is the second most frequent neurodegenerative disease after Alzheimer's disease, which is characterized by low level of dopamine expressing in the striatum and deteriorated dopaminergic neurons (DAn) in Substantia nigra pars compacta (SNpc). Generation of PD-derived DAn including differentiation of human embryonic stem cell (hESC), human neural stem cell (hNSC), human induced pluripotent stem cell (hiPSC) and directly reprogramming provide an ideal tool to model PD, which created the possibilities of mimicking key essential pathological processes charactering single cell changes in vitro...
October 20, 2016: Human Gene Therapy
Leonardo Romorini, Ximena Garate, Gabriel Neiman, Carlos Luzzani, Verónica Alejandra Furmento, Alejandra Sonia Guberman, Gustavo Emilio Sevlever, María Elida Scassa, Santiago Gabriel Miriuka
Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (PSC) that can differentiate into a wide range of specialized cells. Basic fibroblast growth factor is essential for PSC survival, stemness and self-renewal. PI3K/AKT pathway regulates cell viability and apoptosis in many cell types. Although it has been demonstrated that PI3K/AKT activation by bFGF is relevant for PSC stemness maintenance its role on PSC survival remains elusive. In this study we explored the molecular mechanisms involved in the regulation of PSC survival by AKT...
October 20, 2016: Scientific Reports
J Wu, A Platero Luengo, M A Gil, K Suzuki, C Cuello, M Morales Valencia, I Parrilla, C A Martinez, A Nohalez, J Roca, E A Martinez, J C Izpisua Belmonte
More than eighteen years have passed since the first derivation of human embryonic stem cells (ESCs), but their clinical use is still met with several challenges, such as ethical concerns regarding the need of human embryos, tissue rejection after transplantation and tumour formation. The generation of human induced pluripotent stem cells (iPSCs) enables the access to patient-derived pluripotent stem cells (PSCs) and opens the door for personalized medicine as tissues/organs can potentially be generated from the same genetic background as the patient recipients, thus avoiding immune rejections or complication of immunosuppression strategies...
October 2016: Reproduction in Domestic Animals, Zuchthygiene
Poornapriya Ramamurthy, Joshua B White, Joong Yull Park, Richard I Hume, Fumi Ebisu, Flor Mendez, Shuichi Takayama, Kate F Barald
BACKGROUND: To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining Spiral Ganglion Neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived "neurons" could potentially substitute for lost or damaged SGN...
October 19, 2016: Developmental Dynamics: An Official Publication of the American Association of Anatomists
Marcelo Correia, Maria I Sousa, Ana S Rodrigues, Tânia Perestrelo, Sandro L Pereira, Marcelo F Ribeiro, João Ramalho-Santos
The use of new compounds as dietary supplements is increasing, but little is known in terms of possible consequences of their use. Pluripotent stem cells are a promising research tool for citotoxicological research for evaluation of proliferation, cell death, pluripotency and differentiation. Using the mouse embryonic stem cell (mESC) model, we present data on three different compounds that have been proposed as new potential supplements for co-adjuvant disease treatments: kaempferol, berberine and Tauroursodeoxycholic acid (TUDCA)...
June 2016: Data in Brief
Chun Ma, Violetta Karwacki-Neisius, Haoran Tang, Wenjing Li, Zhennan Shi, Haolin Hu, Wenqi Xu, Zhentian Wang, Lingchun Kong, Ruitu Lv, Zheng Fan, Wenhao Zhou, Pengyuan Yang, Feizhen Wu, Jianbo Diao, Li Tan, Yujiang Geno Shi, Fei Lan, Yang Shi
Nono is a component of the para-speckle, which stores and processes RNA. Mouse embryonic stem cells (mESCs) lack para-speckles, leaving the function of Nono in mESCs unclear. Here, we find that Nono functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We report that Nono loss results in robust self-renewing mESCs with epigenomic and transcriptomic features resembling the 2i (GSK and Erk inhibitors)-induced "ground state." Erk interacts with and is required for Nono localization to a subset of bivalent genes that have high levels of poised RNA polymerase...
October 18, 2016: Cell Reports
Guang Yang, Gonzalo I Cancino, Siraj K Zahr, Axel Guskjolen, Anastassia Voronova, Denis Gallagher, Paul W Frankland, David R Kaplan, Freda D Miller
Maternal diabetes is known to adversely influence brain development in offspring. Here, we provide evidence that this involves the circulating metabolite methylglyoxal, which is increased in diabetes, and its detoxifying enzyme, glyoxalase 1 (Glo1), which when mutated is associated with neurodevelopmental disorders. Specifically, when Glo1 levels were decreased in embryonic mouse cortical neural precursor cells (NPCs), this led to premature neurogenesis and NPC depletion embryonically and long-term alterations in cortical neurons postnatally...
October 18, 2016: Cell Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"