Read by QxMD icon Read


Michael J Waring, Huawei Chen, Alfred A Rabow, Graeme Walker, Romel Bobby, Scott Boiko, Rob H Bradbury, Rowena Callis, Edwin Clark, Ian Dale, Danette L Daniels, Austin Dulak, Liz Flavell, Geoff Holdgate, Thomas A Jowitt, Alexey Kikhney, Mark McAlister, Jacqui Méndez, Derek Ogg, Joe Patel, Philip Petteruti, Graeme R Robb, Matthew B Robers, Sakina Saif, Natalie Stratton, Dmitri I Svergun, Wenxian Wang, David Whittaker, David M Wilson, Yi Yao
Proteins of the bromodomain and extraterminal (BET) family, in particular bromodomain-containing protein 4 (BRD4), are of great interest as biological targets. BET proteins contain two separate bromodomains, and existing inhibitors bind to them monovalently. Here we describe the discovery and characterization of probe compound biBET, capable of engaging both bromodomains simultaneously in a bivalent, in cis binding mode. The evidence provided here was obtained in a variety of biophysical and cellular experiments...
October 24, 2016: Nature Chemical Biology
Minoru Tanaka, Justin M Roberts, Hyuk-Soo Seo, Amanda Souza, Joshiawa Paulk, Thomas G Scott, Stephen L DeAngelo, Sirano Dhe-Paganon, James E Bradner
Cellular signaling is often propagated by multivalent interactions. Multivalency creates avidity, allowing stable biophysical recognition. Multivalency is an attractive strategy for achieving potent binding to protein targets, as the affinity of bivalent ligands is often greater than the sum of monovalent affinities. The bromodomain and extraterminal domain (BET) family of transcriptional coactivators features tandem bromodomains through which BET proteins bind acetylated histones and transcription factors...
October 24, 2016: Nature Chemical Biology
Mingcheng Huang, Shan Zeng, Yaoyao Zou, Maohua Shi, Qian Qiu, Youjun Xiao, Guoqiang Chen, Xiuyan Yang, Liuqin Liang, Hanshi Xu
BACKGROUND AND PURPOSE: Increasing evidence indicates the critical role of bromodomain and extra-terminal domain (BET) proteins in regulating immune and inflammatory responses, however, their contribution to vascular inflammation remains to be defined. In this study, we investigated the effect of BET bromodomain inhibition on regulating vascular inflammation and the underlying mechanisms. EXPERIMENTAL APPROACH: Human umbilical vein endothelial cells (HUVECs) were isolated from fresh umbilical cords...
October 24, 2016: British Journal of Pharmacology
Dimitrios Spiliotopoulos, Amedeo Caflisch
We review the results of fragment-based high-throughput docking to the N-terminal bromodomain of BRD4 and the CREBBP bromodomain. In both docking campaigns the ALTA (anchor-based library tailoring) procedure was used to reduce the size of the initial library by selecting for flexible docking only the molecules that contain a fragment with favorable predicted binding energy. Ranking by a force field-based energy with solvation has resulted in small-molecule hits with low-micromolar affinity and favorable ligand efficiency...
March 2016: Drug Discovery Today. Technologies
Peter G K Clark, Darren J Dixon, Paul E Brennan
The bromodomain family of proteins are 'readers' of acetylated lysines of histones, a key mark in the epigenetic code of gene regulation. Without high quality chemical probes with which to study these proteins, their biological function, and potential use in therapeutics, remains unknown. Recently, a number of chemical ligands were reported for the previously unprobed bromodomain proteins BRD7 and BRD9. Herein the development and characterisation of probes against these proteins is detailed, including the preliminary biological activity of BRD7 and BRD9 assessed using these probes...
March 2016: Drug Discovery Today. Technologies
Wylie S Palmer
The entry of small molecule inhibitors of the bromodomain and extra C-terminal domain (BET) family of bromodomains into the clinic has demonstrated the therapeutic potential for this class of epigenetic acetyl-lysine reader proteins. Within the past two years, the development of potent inhibitors for the bromodomain and PHD finger containing protein (BRPF) family and the tripartite motif containing protein 24 (TRIM24) have been reported and are the subject of this review. Both proteins contain other domains with diverse functions and can also be part of a complex of proteins which have implications in epigenetic signaling and disease...
March 2016: Drug Discovery Today. Technologies
Kazuki Sasaki, Minoru Yoshida
Bromodomain-containing proteins are epigenetic readers of histone codes, which recognize acetylated histones and are involved in transcription, nucleosome remodeling and DNA repair. Chromosomal translocations of bromodomain-containing proteins have been implicated in many diseases. In this regard, small molecules that inhibit bromodomains are promising as therapeutic agents. A fluorescence microscopy-based approach provides information on bromodomain inhibitors that abrogate the interaction between acetylated histones and bromodomains in living cells...
March 2016: Drug Discovery Today. Technologies
Guillaume Andrieu, Anna C Belkina, Gerald V Denis
Several cancer clinical trials for small molecule inhibitors of BET bromodomain proteins have been initiated. There is enthusiasm for the anti-proliferative effect of inhibiting BRD4, one of the targets of these inhibitors, which is thought to cooperate with MYC, a long-desired target for cancer therapeutics. However, no current inhibitor is selective for BRD4 among the three somatic BET proteins, which include BRD2 and BRD3; their respective functions are partially overlapping and none are functionally redundant with BRD4...
March 2016: Drug Discovery Today. Technologies
Srimoyee Ghosh, Jose M Lora
Epigenetic control of gene expression is enforced in part through histone modifications. Bromodomain and extra terminal domain (BET) proteins function as crucial chromatin readers, responsible for interpretation of the chromatin code in diverse cellular contexts, ultimately impacting gene transcription. BET proteins can play a major role in inflammation by profoundly affecting the biology of the Thelper 17 (TH17) lineage. We summarize recent studies focusing on BET inhibition as a viable therapeutic alternative for the control of autoimmune diseases driven by aberrant activation of TH17 cells...
March 2016: Drug Discovery Today. Technologies
Jamel Meslamani, Steven G Smith, Roberto Sanchez, Ming-Ming Zhou
Bromodomains are conserved structural modules responsible for recognizing acetylated-lysine residues on histone tails and other transcription-associated proteins, such as transcription factors and co-factors. Owing to their important functions in the regulation of ordered gene transcription in chromatin, bromodomains of the BET family proteins have recently been shown as druggable targets for a wide array of human diseases, including cancer and inflammation. Here we review the structural and functional features of the bromodomains and their small-molecule inhibitors...
March 2016: Drug Discovery Today. Technologies
Aaron J Stonestrom, Sarah C Hsu, Michael T Werner, Gerd A Blobel
Pharmacologic inhibitors of the bromodomain and extra-terminal motif (BET) protein family are in clinical trials for the treatment of hematologic malignancies, yet the functions of individual BET proteins remain largely uncharacterized. We review the molecular roles of BETs in the context of erythropoiesis. Studies in this lineage have provided valuable insights into their mechanisms of action, and helped define the individual and overlapping functions of BET protein family members BRD2, BRD3, and BRD4. These studies have important ramifications for our understanding of the molecular and physiologic roles of BET proteins, and provide a framework for elucidating some of the beneficial and adverse effects of pharmacologic inhibitors...
March 2016: Drug Discovery Today. Technologies
Cheng-Ming Chiang
BRD4 is an epigenetic regulator and transcription cofactor whose phosphorylation by CK2 and dephosphorylation by PP2A modulates its function in chromatin targeting, factor recruitment, and cancer progression. While the bromodomains of BET family proteins, including BRD4, BRD2, BRD3 and BRDT, have been the primary targets of small compounds such as JQ1, I-BET and MS417 that show promising anticancer effects against some hematopoietic cancer and solid tumors, drug resistance upon prolonged treatment necessitates a better understanding of alternative pathways underlying not only the resistance but also persistent BET protein dependence for identifying new targets and effective combination therapy strategies...
March 2016: Drug Discovery Today. Technologies
Steven G Smith, Ming-Ming Zhou
No abstract text is available yet for this article.
March 2016: Drug Discovery Today. Technologies
Dian-Qiu Lv, Shang-Wu Liu, Jian-Hua Zhao, Bang-Jun Zhou, Shao-Peng Wang, Hui-Shan Guo, Yuan-Yuan Fang
Viroids are plant-pathogenic molecules made up of single-stranded circular non-coding RNAs. How replicating viroids interfere with host silencing remains largely unknown. In this study, we investigated the effects of a nuclear-replicating Potato spindle tuber viroid (PSTVd) on interference with plant RNA silencing. Using transient induction of silencing in GFP transgenic Nicotiana benthamiana plants (line 16c), we found that PSTVd replication accelerated GFP silencing and increased Virp1 mRNA, which encodes bromodomain-containing viroid-binding protein 1 and is required for PSTVd replication...
October 21, 2016: Scientific Reports
Fuyumi Kato, Francesco Paolo Fiorentino, Andreu Alibés, Manuel Perucho, Montse Sánchez-Céspedes, Takashi Kohno, Jun Yokota
We aimed to elucidate the effect of JQ1, a BET inhibitor, on small cell lung cancers (SCLCs) with MYCL amplification and/or expression. Fourteen SCLC cell lines, including four with MYCL amplification, were examined for the effects of JQ1 on protein and gene expression by Western blot and mRNA microarray analyses. The sensitivity of SCLC cells to JQ1 was assessed by cell growth and apoptosis assays. MYCL was expressed in all the 14 cell lines, whereas MYC/MYCN expression was restricted mostly to cell lines with gene amplification...
October 14, 2016: Oncotarget
Pei Y Liu, Nicholas Sokolowski, Su T Guo, Faraz Siddiqi, Bernard Atmadibrata, Thomas J Telfer, Yuting Sun, Lihong Zhang, Denise Yu, Joshua Mccarroll, Bing Liu, Rui H Yang, Xiang Y Guo, Andrew E Tee, Ken Itoh, Jenny Wang, Maria Kavallaris, Michelle Haber, Murray D Norris, Belamy B Cheung, Jennifer A Byrne, David S Ziegler, Glenn M Marshall, Marcel E Dinger, Rachel Codd, Xu D Zhang, Tao Liu
BET bromodomain inhibitors are very promising novel anticancer agents, however, single therapy does not cause tumor regression in mice, suggesting the need for combination therapy. After screening a library of 2697 small molecule compounds, we found that two classes of compounds, the quinone-containing compounds such as nanaomycin and anti-microtubule drugs such as vincristine, exerted the best synergistic anticancer effects with the BET bromodomain inhibitor JQ1 in neuroblastoma cells. Mechanistically, the quinone-containing compound nanaomycin induced neuroblastoma cell death but also activated the Nrf2-antioxidant signaling pathway, and the BET bromodomain proteins BRD3 and BRD4 formed a protein complex with Nrf2...
October 13, 2016: Oncotarget
Ke Ren, Wei Zhang, Xiaoqing Chen, Yingyu Ma, Yue Dai, Yimei Fan, Yayi Hou, Ren Xiang Tan, Erguang Li
The human HSV-1 and -2 are common pathogens of human diseases. Both host and viral factors are involved in HSV lytic infection, although detailed mechanisms remain elusive. By screening a chemical library of epigenetic regulation, we identified bromodomain-containing protein 4 (BRD4) as a critical player in HSV infection. We show that treatment with pan BD domain inhibitor enhanced both HSV infection. Using JQ1 as a probe, we found that JQ1, a defined BD1 inhibitor, acts through BRD4 protein since knockdown of BRD4 expression ablated JQ1 effect on HSV infection...
October 2016: PLoS Pathogens
Sarah Picaud, Katharina Leonards, Jean-Philippe Lambert, Oliver Dovey, Christopher Wells, Oleg Fedorov, Octovia Monteiro, Takao Fujisawa, Chen-Yi Wang, Hannah Lingard, Cynthia Tallant, Nikzad Nikbin, Lucie Guetzoyan, Richard Ingham, Steven V Ley, Paul Brennan, Susanne Muller, Anastasia Samsonova, Anne-Claude Gingras, Juerg Schwaller, George Vassiliou, Stefan Knapp, Panagis Filippakopoulos
Bromodomains (BRDs) have emerged as compelling targets for cancer therapy. The development of selective and potent BET (bromo and extra-terminal) inhibitors and their significant activity in diverse tumor models have rapidly translated into clinical studies and have motivated drug development efforts targeting non-BET BRDs. However, the complex multidomain/subunit architecture of BRD protein complexes complicates predictions of the consequences of their pharmacological targeting. To address this issue, we developed a promiscuous BRD inhibitor [bromosporine (BSP)] that broadly targets BRDs (including BETs) with nanomolar affinity, creating a tool for the identification of cellular processes and diseases where BRDs have a regulatory function...
October 2016: Science Advances
Pei Y Liu, Bernard Atmadibrata, Sujanna Mondal, Andrew E Tee, Tao Liu
Neuroblastoma is the most common solid tumor in early childhood. Patients with neuroblastoma due to the amplification of a 130-kb genomic DNA region containing the MYCN, MYCN antisense NCYM and lncUSMycN genes show poor prognosis. BET bromodomain inhibitors show anticancer efficacy against neuroblastoma partly by reducing MYCN gene transcription and N-Myc mRNA and protein expression. We have previously shown that the long nocoding RNA lncUSMycN upregulates N-Myc mRNA expression by binding to the RNA-binding protein NonO...
October 12, 2016: International Journal of Oncology
Jeovanis Gil, Alberto Ramírez-Torres, Sergio Encarnación-Guevara
Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins...
October 13, 2016: Journal of Proteomics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"