Read by QxMD icon Read

sensory nerves

Shailja Tibrewal, Ramesh Kekunnaya
PURPOSE: The aim of the study was to determine the risk of anterior segment ischemia (ASI) after simultaneous three rectus muscle surgery. METHODS: A retrospective cohort study was conducted. All patients who underwent simultaneous three rectus muscle surgery from January 2003 to December 2014 were included. Medical records were reviewed for signs of acute ASI in the postoperative period or presence of any late sequelae. Those patients who had pre-existing corneal pathology obscuring visualisation of anterior chamber and iris were excluded...
March 16, 2018: Strabismus
Rebecca L Cunningham, Kelly R Monk
In situ hybridization enables visualization of mRNA localization, and immunohistochemistry enables visualization of protein localization within a tissue or organism. Both techniques have been extensively utilized in zebrafish (Thisse et al., Development 119:1203-1215, 1993; Dutton et al., Development 128:4113-4125, 2001; Gilmour et al., Neuron 34:577-588, 2002; Lyons et al., Curr Biol 15:513-524, 2005) including for visualization of mRNA localization in Schwann cells (Lyons et al., Curr Biol 15:513-524, 2005; Monk et al...
2018: Methods in Molecular Biology
Rodrigo López-Leal, Paula Diaz, Felipe A Court
Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system...
2018: Methods in Molecular Biology
Y P Tsui, Graham K Shea, Y S Chan, Daisy K Y Shum
Our goal is to derive phenotypically stable Schwann cells from bone marrow stromal cells (BMSCs) for use in transplantation studies of central/peripheral nerve injuries. With the adult rat as model, here we describe steps that foster (1) expansion of the BMSC subpopulation of neural progenitors as neurosphere cells, (2) differentiation of the progenitors into Schwann cell-like cells in adherent culture supplemented with soluble factors, and (3) cell-intrinsic switch of Schwann cell-like cells to the Schwann cell fate following co-culture with sensory neurons purified from dorsal root ganglia...
2018: Methods in Molecular Biology
Gopalakrishnan M Sasidharan
Epidermoid cysts are notorious for their propensity to sneak into deep recesses between cranial nerves in the posterior fossa. Attempts to achieve complete excision using ordinary instruments when tempted by the seeming ease of dissection is known to cause unacceptable deficits. The Xomed monopolar stimulator electrode probe of the nerve integrity electromyography monitor has several advantages when used as the primary dissection tool for deep-seated epidermoid cysts. Cerebellopontine angle epidermoid is the classical prototype of a strategically placed deep-seated epidermoid tumor...
January 12, 2018: Curēus
Thanh D Do, Joseph F Ellis, Elizabeth K Neumann, Troy J Comi, Emily G Tillmaand, Ashley E Lenhart, Stanislav S Rubakhin, Jonathan Sweedler
The mammalian dorsal root ganglia (DRG) are located on the dorsal roots of the spinal nerves and contain cell bodies of primary sensory neurons. DRG cells have been classified into subpopulations based on their size, morphology, intracellular markers, response to stimuli, and neuropeptides. To understand the connections between DRG chemical heterogeneity and cellular function, we performed optically guided, high-throughput single cell profiling using sequential matrix-assisted laser desorption/ionization mass spectrometry (MS) to detect lipids, peptides, and several proteins in individual DRG cells...
March 15, 2018: Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry
Thomas Krøigård, Martin Wirenfeldt, Toke K Svendsen, Søren H Sindrup
Background: Cold-induced peripheral neuropathy has been described in individuals exposed to severe cold resulting in pain, hypersensitivity to cold, hyperhidrosis, numbness, and skin changes. Nerve conduction studies and thermal detection thresholds are abnormal in symptomatic patients, and intraepidermal nerve fiber density (IENFD) in skin biopsies is reduced. Case presentation: A 41-year-old male was included as a healthy subject in a study of the spontaneous variability of quantitative sensory testing (QST), nerve conduction studies (NCS), and IENFD...
March 2018: Brain and Behavior
Antonietta Messina, Ilaria Bitetti, Francesco Precenzano, Diego Iacono, Giovanni Messina, Michele Roccella, Lucia Parisi, Margherita Salerno, Anna Valenzano, Agata Maltese, Monica Salerno, Francesco Sessa, Giuseppe Davide Albano, Rosa Marotta, Ines Villano, Gabriella Marsala, Christian Zammit, Francesco Lavano, Marcellino Monda, Giuseppe Cibelli, Serena Marianna Lavano, Beatrice Gallai, Roberto Toraldo, Vincenzo Monda, Marco Carotenuto
Introduction: Sleep and migraine share a common pathophysiological substrate, although the underlying mechanisms are unknown. The serotonergic and orexinergic systems are both involved in the regulation of sleep/wake cycle, and numerous studies show that both are involved in the migraine etiopathogenesis. These two systems are anatomically and functionally interconnected. Our hypothesis is that in migraine a dysfunction of orexinergic projections on the median raphe (MR) nuclei, interfering with serotonergic regulation, may cause Non-Rapid Eye Movement parasomnias, such as somnambulism...
2018: Frontiers in Neurology
Per F Nordmark, Christina Ljungberg, Roland S Johansson
Transection of the median nerve typically causes lifelong restriction of fine sensory and motor skills of the affected hand despite the best available surgical treatment. Inspired by recent findings on activity-dependent structural plasticity of the adult brain, we used voxel-based morphometry to analyze the brains of 16 right-handed adults who more than two years earlier had suffered injury to the left or right median nerve followed by microsurgical repair. Healthy individuals served as matched controls. Irrespective of side of injury, we observed gray matter reductions in left ventral and right dorsal premotor cortex, and white matter reductions in commissural pathways interconnecting those motor areas...
March 14, 2018: Scientific Reports
Toshiyasu Matsui, Yasushi Kobayashi
We examined the organization of the olfactory organ and assessed the lectin histochemistry to investigate the glycoconjugate distribution of the olfactory bulb in premetamorphic larvae of Cynops ensicauda. The nasal cavity was an oval chamber that contained olfactory epithelium and a primitive vomeronasal organ. Secretory products were found in the supporting cells of the two sensory epithelia and in the respiratory cells. Ten lectins bound to the olfactory and vomeronasal nerve fibers as well as to the glomeruli in the olfactory bulb...
March 15, 2018: Journal of Veterinary Medical Science
Ine Vandewauw, Katrien De Clercq, Marie Mulier, Katharina Held, Silvia Pinto, Nele Van Ranst, Andrei Segal, Thierry Voet, Rudi Vennekens, Katharina Zimmermann, Joris Vriens, Thomas Voets
Acute pain represents a crucial alarm signal to protect us from injury. Whereas the nociceptive neurons that convey pain signals were described more than a century ago, the molecular sensors that detect noxious thermal or mechanical insults have yet to be fully identified. Here we show that acute noxious heat sensing in mice depends on a triad of transient receptor potential (TRP) ion channels: TRPM3, TRPV1, and TRPA1. We found that robust somatosensory heat responsiveness at the cellular and behavioural levels is observed only if at least one of these TRP channels is functional...
March 14, 2018: Nature
Randall J Harley, Joseph P Murdy, Zhirong Wang, Michael C Kelly, Tessa-Jonne F Ropp, SeHoon H Park, Patricia F Maness, Paul B Manis, Thomas M Coate
BACKGROUND: In the cochlea, auditory development depends on precise patterns of innervation by afferent and efferent nerve fibers, as well as a stereotyped arrangement of hair and supporting cells. NrCAM is a homophilic cell adhesion molecule that controls diverse aspects of nervous system development, but the function of NrCAM in cochlear development is not well understood. RESULTS: Throughout cochlear innervation, NrCAM is detectable on spiral ganglion neuron (SGN) afferent and olivocochlear efferent fibers, and on the membranes of developing hair and supporting cells...
March 14, 2018: Developmental Dynamics: An Official Publication of the American Association of Anatomists
István Z Bátai, Ádám Horváth, Erika Pintér, Zsuzsanna Helyes, Gábor Pozsgai
Transient receptor potential ankyrin 1 (TRPA1) non-selective ligand-gated cation channels are mostly expressed in primary sensory neurons. Polysulfides (POLYs) are Janus-faced substances interacting with numerous target proteins and associated with both protective and detrimental processes. Activation of TRPA1 in sensory neurons, consequent somatostatin (SOM) liberation and action on sst4 receptors have recently emerged as mediators of the antinociceptive effect of organic trisulfide dimethyl trisulfide (DMTS)...
2018: Frontiers in Endocrinology
Karine C Flor, Elaine F Silva, Miguel F Menezes, Gustavo R Pedrino, Eduardo Colombari, Daniel B Zoccal
Exposure to chronic sustained hypoxia (SH), as experienced in high altitudes, elicits an increase in ventilation, named ventilatory acclimatization to hypoxia (VAH). We previously showed that rats exposed to short-term (24 h) SH exhibit enhanced abdominal expiratory motor activity at rest, accompanied by augmented baseline sympathetic vasoconstrictor activity. In the present study, we investigated whether the respiratory and sympathetic changes elicited by short-term SH are accompanied by carotid body chemoreceptor sensitization...
2018: Frontiers in Physiology
Maria M Buckley, Dervla O'Malley
Background and Objectives: Bidirectional signaling between the gastrointestinal tract and the brain is vital for maintaining whole-body homeostasis. Moreover, emerging evidence implicates vagal afferent signaling in the modulation of host physiology by microbes, which are most abundant in the colon. This study aims to optimize and advance dissection and recording techniques to facilitate real-time recordings of afferent neural signals originating in the distal colon. New Protocol: This paper describes a dissection technique, which facilitates extracellular electrophysiological recordings from visceral pelvic, spinal and vagal afferent neurons in response to stimulation of the distal colon...
2018: Frontiers in Neuroscience
Satyanarayana Achanta, Narendranath Reddy Chintagari, Marian Brackmann, Shrilatha Balakrishna, Sven-Eric Jordt
The skin is highly sensitive to the chemical warfare agent in mustard gas, sulfur mustard (SM) that initiates a delayed injury response characterized by erythema, inflammation and severe vesication (blistering). Although SM poses a continuing threat, used as recently as in the Syrian conflict, no mechanism-based antidotes against SM are available. Recent studies demonstrated that Transient Receptor Potential Ankyrin 1 (TRPA1), a chemosensory cation channel in sensory nerves innervating the skin, is activated by SM and 2-chloroethyl ethyl sulfide (CEES), an SM analog, in vitro, suggesting it may promote vesicant injury...
March 10, 2018: Toxicology Letters
Pini Koplovitch, Marshall Devor
Ectopic impulse discharge (ectopia) generated in the soma of afferent neurons in dorsal root ganglia (DRGs) following nerve injury is thought to be a major contributor to neuropathic pain. The DRG is thus a prime interventional target. The process of electrogenesis (impulse generation) in the DRG is far more sensitive to systemically administered Na channel blockers than the process of impulse propagation along sensory axons. It should therefore be possible to selectively suppress DRG ectopia with local application of membrane stabilizing agents without blocking normal impulse traffic...
March 12, 2018: Pain
Farnaz Dehghan, Shila Haghighat, Hadiseh Ramezanian, Mehdi Karami, Mohammad Reza Rezaei
Background: The aim of this study is to determine the predictive value of ultrasonography for results of local steroid injection in patients with carpal tunnel syndrome (CTS). Materials and Methods: This prospective cohort study was conducted during a 1-year period in outpatient clinics of rehabilitation and physical medicine including 35 patients with moderate and severe CTS who receive ultrasonography-guided local steroid injection. The Boston self-assessment questionnaire and electrodiagnosis parameters were recorded at baseline, 1 month, and 3 months after therapy...
2018: Advanced Biomedical Research
Cyril Rivat, Chamroeun Sar, Ilana Mechaly, Jean-Philippe Leyris, Lucie Diouloufet, Corinne Sonrier, Yann Philipson, Olivier Lucas, Sylvie Mallié, Antoine Jouvenel, Adrien Tassou, Henri Haton, Stéphanie Venteo, Jean-Philippe Pin, Eric Trinquet, Fabienne Charrier-Savournin, Alexandre Mezghrani, Willy Joly, Julie Mion, Martine Schmitt, Alexandre Pattyn, Frédéric Marmigère, Pierre Sokoloff, Patrick Carroll, Didier Rognan, Jean Valmier
Peripheral neuropathic pain (PNP) is a debilitating and intractable chronic disease, for which sensitization of somatosensory neurons present in dorsal root ganglia that project to the dorsal spinal cord is a key physiopathological process. Here, we show that hematopoietic cells present at the nerve injury site express the cytokine FL, the ligand of fms-like tyrosine kinase 3 receptor (FLT3). FLT3 activation by intra-sciatic nerve injection of FL is sufficient to produce pain hypersensitivity, activate PNP-associated gene expression and generate short-term and long-term sensitization of sensory neurons...
March 12, 2018: Nature Communications
Sabine Buhner, Hannes Hahne, Kerstin Hartwig, Qin Li, Sheila Vignali, Daniela Ostertag, Chen Meng, Gabriele Hörmannsperger, Breg Braak, Christian Pehl, Thomas Frieling, Giovanni Barbara, Roberto De Giorgio, Ihsan Ekin Demir, Güralp Onur Ceyhan, Florian Zeller, Guy Boeckxstaens, Dirk Haller, Bernhard Kuster, Michael Schemann
BACKGROUND & AIMS: The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). METHOD: Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques...
2018: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"