keyword
MENU ▼
Read by QxMD icon Read
search

"Neuronal avalanches"

keyword
https://www.readbyqxmd.com/read/28630879/imaging-cajal-s-neuronal-avalanche-how-wide-field-optical-imaging-of-the-point-spread-advanced-the-understanding-of-neocortical-structure-function-relationship
#1
REVIEW
Ron D Frostig, Cynthia H Chen-Bee, Brett A Johnson, Nathan S Jacobs
This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species...
July 2017: Neurophotonics
https://www.readbyqxmd.com/read/28552964/criticality-meets-learning-criticality-signatures-in-a-self-organizing-recurrent-neural-network
#2
Bruno Del Papa, Viola Priesemann, Jochen Triesch
Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear...
2017: PloS One
https://www.readbyqxmd.com/read/28542191/spontaneous-cortical-activity-is-transiently-poised-close-to-criticality
#3
Gerald Hahn, Adrian Ponce-Alvarez, Cyril Monier, Giacomo Benvenuti, Arvind Kumar, Frédéric Chavane, Gustavo Deco, Yves Frégnac
Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuronal avalanches in spiking activity has been equivocal with studies reporting both its presence and absence...
May 2017: PLoS Computational Biology
https://www.readbyqxmd.com/read/28507231/biological-modelling-of-a-computational-spiking-neural-network-with-neuronal-avalanches
#4
Xiumin Li, Qing Chen, Fangzheng Xue
In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs)...
June 28, 2017: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
https://www.readbyqxmd.com/read/28489906/neocortical-activity-is-stimulus-and-scale-invariant
#5
Yahya Karimipanah, Zhengyu Ma, Jae-Eun Kang Miller, Rafael Yuste, Ralf Wessel
Mounting evidence supports the hypothesis that the cortex operates near a critical state, defined as the transition point between order (large-scale activity) and disorder (small-scale activity). This criticality is manifested by power law distribution of the size and duration of spontaneous cascades of activity, which are referred as neuronal avalanches. The existence of such neuronal avalanches has been confirmed by several studies both in vitro and in vivo, among different species and across multiple spatial scales...
2017: PloS One
https://www.readbyqxmd.com/read/28469176/subsampling-scaling
#6
A Levina, V Priesemann
In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system's aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees...
May 4, 2017: Nature Communications
https://www.readbyqxmd.com/read/28456161/balance-of-excitation-and-inhibition-determines-1-f-power-spectrum-in-neuronal-networks
#7
F Lombardi, H J Herrmann, L de Arcangelis
The 1/f-like decay observed in the power spectrum of electro-physiological signals, along with scale-free statistics of the so-called neuronal avalanches, constitutes evidence of criticality in neuronal systems. Recent in vitro studies have shown that avalanche dynamics at criticality corresponds to some specific balance of excitation and inhibition, thus suggesting that this is a basic feature of the critical state of neuronal networks. In particular, a lack of inhibition significantly alters the temporal structure of the spontaneous avalanche activity and leads to an anomalous abundance of large avalanches...
April 2017: Chaos
https://www.readbyqxmd.com/read/28192429/co-emergence-of-multi-scale-cortical-activities-of-irregular-firing-oscillations-and-avalanches-achieves-cost-efficient-information-capacity
#8
Dong-Ping Yang, Hai-Jun Zhou, Changsong Zhou
The brain is highly energy consuming, therefore is under strong selective pressure to achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency as a design principle for cortical activities has been rarely studied. Especially it is not clear how cost-efficiency is related to ubiquitously observed multi-scale properties: irregular firing, oscillations and neuronal avalanches. Here we demonstrate that these prominent properties can be simultaneously observed in a generic, biologically plausible neural circuit model that captures excitation-inhibition balance and realistic dynamics of synaptic conductance...
February 2017: PLoS Computational Biology
https://www.readbyqxmd.com/read/28019026/psychedelics-as-medicines-an-emerging-new-paradigm
#9
REVIEW
D E Nichols, M W Johnson, C D Nichols
Scientific interest in serotonergic psychedelics (e.g., psilocybin and LSD; 5-HT2A receptor agonists) has dramatically increased within the last decade. Clinical studies administering psychedelics with psychotherapy have shown preliminary evidence of robust efficacy in treating anxiety and depression, as well as addiction to tobacco and alcohol. Moreover, recent research has suggested that these compounds have potential efficacy against inflammatory diseases through novel mechanisms, with potential advantages over existing antiinflammatory agents...
February 2017: Clinical Pharmacology and Therapeutics
https://www.readbyqxmd.com/read/27923040/a-low-correlation-resting-state-of-the-striatum-during-cortical-avalanches-and-its-role-in-movement-suppression
#10
Andreas Klaus, Dietmar Plenz
During quiet resting behavior, involuntary movements are suppressed. Such movement control is attributed to cortico-basal ganglia loops, yet population dynamics within these loops during resting and their relation to involuntary movements are not well characterized. Here, we show by recording cortical and striatal ongoing population activity in awake rats during quiet resting that intrastriatal inhibition maintains a low-correlation striatal resting state in the presence of cortical neuronal avalanches. Involuntary movements arise from disturbed striatal resting activity through two different population dynamics...
December 2016: PLoS Biology
https://www.readbyqxmd.com/read/27915209/development-of-neural-population-activity-toward-self-organized-criticality
#11
Yuichiro Yada, Takeshi Mita, Akihiro Sanada, Ryuichi Yano, Ryohei Kanzaki, Douglas J Bakkum, Andreas Hierlemann, Hirokazu Takahashi
Self-organized criticality (SoC), a spontaneous dynamic state established and maintained in networks of moderate complexity, is a universal characteristic of neural systems. Such systems produce cascades of spontaneous activity that are typically characterized by power-law distributions and rich, stable spatiotemporal patterns (i.e., neuronal avalanches). Since the dynamics of the critical state confer advantages in information processing within neuronal networks, it is of great interest to determine how criticality emerges during development...
November 30, 2016: Neuroscience
https://www.readbyqxmd.com/read/27903734/deviations-from-critical-dynamics-in-interictal-epileptiform-activity
#12
Oshrit Arviv, Mordekhay Medvedovsky, Liron Sheintuch, Abraham Goldstein, Oren Shriki
The framework of criticality provides a unifying perspective on neuronal dynamics from in vitro cortical cultures to functioning human brains. Recent findings suggest that a healthy cortex displays critical dynamics, giving rise to scale-free spatiotemporal cascades of activity, termed neuronal avalanches. Pharmacological manipulations of the excitation-inhibition balance (EIB) in cortical cultures were previously shown to result in deviations from criticality and from the power law scaling of avalanche size distribution...
November 30, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
https://www.readbyqxmd.com/read/27819336/phase-transitions-and-self-organized-criticality-in-networks-of-stochastic-spiking-neurons
#13
Ludmila Brochini, Ariadne de Andrade Costa, Miguel Abadi, Antônio C Roque, Jorge Stolfi, Osame Kinouchi
Phase transitions and critical behavior are crucial issues both in theoretical and experimental neuroscience. We report analytic and computational results about phase transitions and self-organized criticality (SOC) in networks with general stochastic neurons. The stochastic neuron has a firing probability given by a smooth monotonic function Φ(V) of the membrane potential V, rather than a sharp firing threshold. We find that such networks can operate in several dynamic regimes (phases) depending on the average synaptic weight and the shape of the firing function Φ...
November 7, 2016: Scientific Reports
https://www.readbyqxmd.com/read/27534901/synaptic-plasticity-and-neuronal-refractory-time-cause-scaling-behaviour-of-neuronal-avalanches
#14
L Michiels van Kessenich, L de Arcangelis, H J Herrmann
Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally...
2016: Scientific Reports
https://www.readbyqxmd.com/read/27516806/generalized-information-equilibrium-approaches-to-eeg-sleep-stage-discrimination
#15
Todd Zorick, Jason Smith
Recent advances in neuroscience have raised the hypothesis that the underlying pattern of neuronal activation which results in electroencephalography (EEG) signals is via power-law distributed neuronal avalanches, while EEG signals are nonstationary. Therefore, spectral analysis of EEG may miss many properties inherent in such signals. A complete understanding of such dynamical systems requires knowledge of the underlying nonequilibrium thermodynamics. In recent work by Fielitz and Borchardt (2011, 2014), the concept of information equilibrium (IE) in information transfer processes has successfully characterized many different systems far from thermodynamic equilibrium...
2016: Computational and Mathematical Methods in Medicine
https://www.readbyqxmd.com/read/27094323/temporal-correlations-in-neuronal-avalanche-occurrence
#16
F Lombardi, H J Herrmann, D Plenz, L de Arcangelis
Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics...
April 20, 2016: Scientific Reports
https://www.readbyqxmd.com/read/27092071/statistical-evaluation-of-waveform-collapse-reveals-scale-free-properties-of-neuronal-avalanches
#17
Aleena Shaukat, Jean-Philippe Thivierge
Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together...
2016: Frontiers in Computational Neuroscience
https://www.readbyqxmd.com/read/27047341/repertoires-of-spike-avalanches-are-modulated-by-behavior-and-novelty
#18
Tiago L Ribeiro, Sidarta Ribeiro, Mauro Copelli
Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance...
2016: Frontiers in Neural Circuits
https://www.readbyqxmd.com/read/26696860/discrete-scale-invariance-of-human-large-eeg-voltage-deflections-is-more-prominent-in-waking-than-sleep-stage-2
#19
Todd Zorick, Mark A Mandelkern
Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals...
2015: Frontiers in Human Neuroscience
https://www.readbyqxmd.com/read/26651741/structural-versus-dynamical-origins-of-mean-field-behavior-in-a-self-organized-critical-model-of-neuronal-avalanches
#20
COMPARATIVE STUDY
S Amin Moosavi, Afshin Montakhab
Critical dynamics of cortical neurons have been intensively studied over the past decade. Neuronal avalanches provide the main experimental as well as theoretical tools to consider criticality in such systems. Experimental studies show that critical neuronal avalanches show mean-field behavior. There are structural as well as recently proposed [Phys. Rev. E 89, 052139 (2014)] dynamical mechanisms that can lead to mean-field behavior. In this work we consider a simple model of neuronal dynamics based on threshold self-organized critical models with synaptic noise...
2015: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
keyword
keyword
120899
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"