Read by QxMD icon Read

mouse visual cortex

Satoru Kondo, Takashi Yoshida, Kenichi Ohki
A minicolumn is the smallest anatomical module in the cortical architecture, but it is still in debate whether it serves as functional units for cortical processing. In the rodent primary visual cortex (V1), neurons with different preferred orientations are mixed horizontally in a salt and pepper manner, but vertical functional organization was not examined. In this study, we found that neurons with similar orientation preference are weakly but significantly clustered vertically in a short length and horizontally in the scale of a minicolumn...
October 21, 2016: Nature Communications
Yasuyuki Osanai, Takeshi Shimizu, Takuma Mori, Yumiko Yoshimura, Nobuhiko Hatanaka, Atsushi Nambu, Yoshitaka Kimori, Shinsuke Koyama, Kenta Kobayashi, Kazuhiro Ikenaka
Oligodendrocytes myelinate neuronal axons during development and increase conduction velocity of neuronal impulses in the central nervous system. Neuronal axons extend from multiple brain regions and pass through the white matter; however, whether oligodendrocytes ensheath a particular set of axons or do so randomly within the mammalian brain remains unclear. We developed a novel method to visualize individual oligodendrocytes and axon derived from a particular brain region in mouse white matter using a combinational injection of attenuated rabies virus and adeno-associated virus...
October 19, 2016: Glia
Jinge Yang, Dan Wu, Yong Tang, Huabei Jiang
Acupuncture has been an effective treatment for various pain in China for several thousand years. However, the mechanisms underlying this mysterious ancient healing are still largely unknown. Here we applied photoacoustic microscopy (PAM) to investigate brain hemodynamic changes in response to electronic acupuncture (EA) at ST36 (Zusanli). Due to the high optical absorption of blood at 532 nm, PAM could sensitively probe changes in hemoglobin concentration (HbT, i.e., cerebral blood volume [CBV]) of cortical regions in high resolution...
October 18, 2016: Journal of Biophotonics
George S Vidal, Maja Djurisic, Kiana Brown, Richard W Sapp, Carla J Shatz
Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood...
September 2016: ENeuro
Siyu Zhang, Min Xu, Wei-Cheng Chang, Chenyan Ma, Johnny Phong Hoang Do, Daniel Jeong, Tiffany Lei, Jiang Lan Fan, Yang Dan
Long-range projections from the frontal cortex are known to modulate sensory processing in multiple modalities. Although the mouse has become an increasingly important animal model for studying the circuit basis of behavior, the functional organization of its frontal cortical long-range connectivity remains poorly characterized. Here we used virus-assisted circuit mapping to identify the brain networks for top-down modulation of visual, somatosensory and auditory processing. The visual cortex is reciprocally connected to the anterior cingulate area, whereas the somatosensory and auditory cortices are connected to the primary and secondary motor cortices...
October 17, 2016: Nature Neuroscience
F Vallone, E Vannini, A Cintio, M Caleo, A Di Garbo
Epilepsy is characterized by substantial network rearrangements leading to spontaneous seizures and little is known on how an epileptogenic focus impacts on neural activity in the contralateral hemisphere. Here, we used a model of unilateral epilepsy induced by injection of the synaptic blocker tetanus neurotoxin (TeNT) in the mouse primary visual cortex (V1). Local field potential (LFP) signals were simultaneously recorded from both hemispheres of each mouse in acute phase (peak of toxin action) and chronic condition (completion of TeNT effects)...
September 2016: Physical Review. E
Bao-Hua Liu, Andrew D Huberman, Massimo Scanziani
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision...
October 12, 2016: Nature
Ryuta Mizutani, Rino Saiga, Masato Ohtsuka, Hiromi Miura, Masato Hoshino, Akihisa Takeuchi, Kentaro Uesugi
Neurons transmit active potentials through axons, which are essential for the brain to function. In this study, the axonal networks of the murine brain were visualized with X-ray tomographic microscopy, also known as X-ray microtomography or micro-CT. Murine brain samples were freeze-dried to reconstitute the intrinsic contrast of tissue constituents and subjected to X-ray visualization. A whole brain hemisphere visualized by absorption contrast illustrated three-dimensional structures including those of the striatum, corpus callosum, and anterior commissure...
October 11, 2016: Scientific Reports
Huizhen Huang, Marissa S Kuzirian, Xiaoyun Cai, Lindsey M Snyder, Jonathan Cohen, Daniel H Kaplan, Sarah E Ross
The Neurokinin 1 Receptor (NK1R), which binds Substance P, is expressed in discrete populations of neurons throughout the nervous system, where it has numerous roles including the modulation of pain and affective behaviors. Here, we report the generation of a NK1R-CreER knockin allele, in which CreER(T2) replaces the coding sequence of the TACR1 gene (encoding NK1R) in order to gain genetic access to these cells. We find that the NK1R-CreER allele mediates recombination in many regions of the nervous system that are important in pain and anxiety including the amygdala, hypothalamus, frontal cortex, raphe nucleus, and dorsal horn of the spinal cord...
October 6, 2016: Genesis: the Journal of Genetics and Development
Yu Gu, Trinh Tran, Sachiko Murase, Andrew Borrell, Alfredo Kirkwood, Elizabeth M Quinlan
: Maturation of excitatory drive onto fast-spiking interneurons (FS INs) in the visual cortex has been implicated in the control of the timing of the critical period for ocular dominance plasticity. However, the mechanisms that regulate the strength of these synapses over cortical development are not understood. Here we use a mouse model to show that neuregulin (NRG) and the receptor tyrosine kinase erbB4 regulate the timing of the critical period. NRG1 enhanced the strength of excitatory synapses onto FS INs, which inhibited ocular dominance plasticity during the critical period but rescued plasticity in transgenics with hypoexcitable FS INs...
October 5, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Akiya Watakabe, Osamu Sadakane, Katsusuke Hata, Masanari Ohtsuka, Masafumi Takaji, Tetsuo Yamamori
It is important to study the neural connectivities and functions in primates. For this purpose, it is critical to be able to transfer genes to certain neurons in the primate brain so that we can image the neuronal signals and analyze the function of the transferred gene. Toward this end, our team has been developing gene transfer systems using viral vectors. In this review, we summarize our current achievements as follows. 1) We compared the features of gene transfer using five different AAV serotypes in combination with three different promoters, namely, CMV, mouse CaMKII (CaMKII), and human synapsin 1 (hSyn1), in the marmoset cortex with those in the mouse and macaque cortices...
October 5, 2016: Developmental Neurobiology
Inbal Ayzenshtat, Jesse Jackson, Rafael Yuste
The response properties of neurons to sensory stimuli have been used to identify their receptive fields and to functionally map sensory systems. In primary visual cortex, most neurons are selective to a particular orientation and spatial frequency of the visual stimulus. Using two-photon calcium imaging of neuronal populations from the primary visual cortex of mice, we have characterized the response properties of neurons to various orientations and spatial frequencies. Surprisingly, we found that the orientation selectivity of neurons actually depends on the spatial frequency of the stimulus...
September 2016: ENeuro
Xiao-Li He, Shi-Hui Zhao, Wei You, Yu-Ying Cai, Yan-Yun Wang, Yong-Ming Ye, Bao-Hui Jia
OBJECTIVE: To investigate the preventive treatment effects of electroacupuncture (EA) on cognitive changes and brain damage in senescence-accelerated mouse prone 8 (SAMP8) mice. METHODS: The 5-month-old male SAMP8 and age-matched homologous normal aging mice (SAMR1) were adopted in this study. EA stimulation at Baihui (GV 20) and Yintang (EX-HN 3) was performed every other day for 12 weeks, 4 weeks as a course. Morris water maze test and Nissl-stained with cresyl violet were used for cognitive impairments evaluation and brain morphometric analysis...
September 26, 2016: Chinese Journal of Integrative Medicine
Rinaldo David D'Souza, Andrew Max Meier, Pawan Bista, Quanxin Wang, Andreas Burkhalter
Diverse features of sensory stimuli are selectively processed in distinct brain areas. The relative recruitment of inhibitory and excitatory neurons within an area controls the gain of neurons for appropriate stimulus coding. We examined how such a balance of inhibition and excitation is differentially recruited across multiple levels of a cortical hierarchy by mapping the locations and strengths of synaptic inputs to pyramidal and parvalbumin (PV)-expressing neurons in feedforward and feedback pathways interconnecting primary (V1) and two higher visual areas...
September 26, 2016: ELife
Chia-Yi Lin, Shih-Chuan Huang, Chun-Che Tung, Chih-Hsuan Chou, Susan Shur-Fen Gau, Hsien-Sung Huang
Genomic imprinting is an epigenetic mechanism causing monoallelic expression in a parent-of-origin-specific manner. Disruption of imprinted genes causes various neurological and psychiatric disorders. However, the role of imprinted genes in the brain is largely unknown. Different cell types within distinct brain regions can influence the genomic imprinting status, but imprinted genes in single cell types within distinct brain regions have not been characterized on a genome-wide scale. To address this critical question, we used a multi-stage approach, which combined genetically engineered mice with fluorescence-based laser capture microdissection (LCM) to capture excitatory neurons, inhibitory neurons and astrocytes as single cells in layer 2/3 of mouse visual cortex...
2016: PloS One
Hyung-Jun Im, Jarang Hahm, Hyejin Kang, Hongyoon Choi, Hyekyoung Lee, Do Won Hwang, E Edmund Kim, June-Key Chung, Dong Soo Lee
Movement impairments in Parkinson's disease (PD) are caused by the degeneration of dopaminergic neurons and the consequent disruption of connectivity in the cortico-striatal-thalamic loop. This study evaluated brain metabolic connectivity in a 6-Hydroxydopamine (6-OHDA)-induced mouse model of PD using (18)F-fluorodeoxy glucose positron emission tomography (FDG PET). Fourteen PD-model mice and ten control mice were used for the analysis. Voxel-wise t-tests on FDG PET results yielded no significant regional metabolic differences between the PD and control groups...
2016: Scientific Reports
Aris Fiser, David Mahringer, Hassana K Oyibo, Anders V Petersen, Marcus Leinweber, Georg B Keller
In generative models of brain function, internal representations are used to generate predictions of sensory input, yet little is known about how internal models influence sensory processing. Here we show that, with experience in a virtual environment, the activity of neurons in layer 2/3 of mouse primary visual cortex (V1) becomes increasingly informative of spatial location. We found that a subset of V1 neurons exhibited responses that were predictive of the upcoming visual stimulus in a spatially dependent manner and that the omission of an expected stimulus drove strong responses in V1...
September 12, 2016: Nature Neuroscience
Amy Baohan, Taruna Ikrar, Elaine Tring, Xiangmin Xu, Joshua T Trachtenberg
Perisomatic inhibition of pyramidal neurons is established by fast-spiking, parvalbumin-expressing interneurons (PV cells). Failure to assemble adequate perisomatic inhibition is thought to underlie the aetiology of neurological dysfunction in seizures, autism spectrum disorders and schizophrenia. Here we show that in mouse visual cortex, strong perisomatic inhibition does not develop if PV cells lack a single copy of Pten. PTEN signalling appears to drive the assembly of perisomatic inhibition in an experience-dependent manner by suppressing the expression of EphB4; PV cells hemizygous for Pten show an ∼2-fold increase in expression of EphB4, and over-expression of EphB4 in adult PV cells causes a dismantling of perisomatic inhibition...
2016: Nature Communications
Janelle Mp Pakan, Scott C Lowe, Evelyn Dylda, Sander W Keemink, Stephen P Currie, Christopher A Coutts, Nathalie L Rochefort
Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locomotion increases the activity of vasoactive intestinal peptide (VIP), somatostatin (SST) and parvalbumin (PV)-positive interneurons during visual stimulation, challenging the disinhibition model...
2016: ELife
Christian R Burgess, Rohan N Ramesh, Arthur U Sugden, Kirsten M Levandowski, Margaret A Minnig, Henning Fenselau, Bradford B Lowell, Mark L Andermann
The needs of the body can direct behavioral and neural processing toward motivationally relevant sensory cues. For example, human imaging studies have consistently found specific cortical areas with biased responses to food-associated visual cues in hungry subjects, but not in sated subjects. To obtain a cellular-level understanding of these hunger-dependent cortical response biases, we performed chronic two-photon calcium imaging in postrhinal association cortex (POR) and primary visual cortex (V1) of behaving mice...
September 7, 2016: Neuron
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"