Read by QxMD icon Read

Biomedical engineer

Wei Liu, Daming Wang, Jianghong Huang, You Wei, Jianyi Xiong, Weimin Zhu, Li Duan, Jielin Chen, Rong Sun, Daping Wang
Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Shanshan Guo, Xiaoying Zhu, Xian Jun Loh
Controlling the adhesion of mammalian and bacterial cells at the interfaces between synthetic materials and biological environments is a real challenge in the biomedical fields such as tissue engineering, antibacterial coating, implantable biomaterials and biosensors. The surface properties of materials are known to profoundly influence the adhesion processes. To mediate the adhesion processes, polymeric coatings have been used to functionalize surfaces to introduce diverse physicochemical properties. The polyelectrolyte multilayer films built via the layer-by-layer (LbL) method, introduced by Moehwald, Decher, and Lvov 20years ago, has led to significant developments ranging from the fundamental understanding of cellular processes to controlling cell adhesion for biomedical applications...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Y Ke, X Y Zhang, S Ramakrishna, L M He, G Wu
Polyhydroxyalkanoates (PHAs) are a class of natural polyesters as carbon and energy reserves by >300 species of microorganisms. They are fully biodegradable, biocompatible and piezoelectric biopolymers that have attracted much attention recently as the biomaterial of choice for medical applications. However, the toughness, processability and hydrophilicity of PHAs need to tune to expand their applications as tissue engineering scaffolds or drug delivery systems. Reactive polymer blending is one of the most economic and versatile way to produce materials combining the desired properties via forming the compatibilizing agents in situ or inducing the chemico-physical interactions between polymer blends...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Lane F Donnelly, Shirley S Cherian, Kimberly B Chua, Sam Thankachan, Laura A Millecker, Alex G Koroll, George S Bisset
BACKGROUND: Because of the increasing complexities of providing imaging for pediatric health care services, a more reliable process to manage the daily delivery of care is necessary. Objective We describe our Daily Readiness Huddle and the effects of the process on problem identification and improvement. MATERIALS AND METHODS: Our Daily Readiness Huddle has four elements: metrics review, clinical volume review, daily readiness assessment, and problem accountability...
October 22, 2016: Pediatric Radiology
Nor Hasrul Akhmal Ngadiman, Noordin Mohd Yusof, Ani Idris, Effaliza Misran, Denni Kurniawan
The use of electrospinning process in fabricating tissue engineering scaffolds has received great attention in recent years due to its simplicity. The nanofibers produced via electrospinning possessed morphological characteristics similar to extracellular matrix of most tissue components. Porosity plays a vital role in developing tissue engineering scaffolds because it influences the biocompatibility performance of the scaffolds. In this study, maghemite (γ-Fe2O3) was mixed with polyvinyl alcohol (PVA) and subsequently electrospun to produce nanofibers...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Nafiseh Mahmoudi, Abdolreza Simchi
Nanofibrous structures that mimic the native extracellular matrix and promote cell adhesion have attracted considerable interest for biomedical applications. In this study, GO-modified nanofibrous biopolymers (GO) were prepared by electrospinning blended solutions of chitosan (80vol%), polyvinyl pyrrolidone (15vol%), polyethylene oxide (5vol%) containing GO nanosheets (0-2wt%). It is shown that GO nanosheets significantly change the conductivity and viscosity of highly concentrated chitosan solutions, so that ultrafine and uniform fibers with an average diameter of 60nm are spinnable...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Thidarat Wongpinyochit, Blair F Johnston, F Philipp Seib
Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles...
October 8, 2016: Journal of Visualized Experiments: JoVE
Antonio Miguel Cruz, Mayra R Guarín
To date, there are no broadly accepted or accurate models to determine appropriate staffing [levels] for clinical engineering departments (CEDs). The purpose of this study is to determine what the determinants of the staffing levels are (total number of full time equivalents (FTEs)) in CEDs in healthcare organisations. In doing so, we used a cross-sectional exploratory approach by using a multivariate regression model over a secondary source of data information from the AAMI Benchmarking Solutions-Healthcare Technology Management database...
October 21, 2016: Journal of Medical Engineering & Technology
Z Riedelová-Reicheltová, E Brynda, T Riedel
Fibrin is a versatile biopolymer that has been extensively used in tissue engineering. In this paper fibrin nanostructures prepared using a technique based on the catalytic effect of fibrin-bound thrombin are presented. This technique enables surface-attached thin fibrin networks to form with precisely regulated morphology without the development of fibrin gel in bulk solution. Moreover, the influence of changing the polymerization time, along with the antithrombin III and heparin concentrations on the morphology of fibrin nanostructures was explored...
October 20, 2016: Physiological Research
M Hrubý, J Kučka, J Pánek, P Štěpánek
For many important research topics in polymer science the use of radionuclides brings significant benefits concerning nanotechnology, polymer drug delivery systems, tissue engineering etc. This contribution describes important achievements of the radionuclide laboratory at Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic (IMC) in the area of polymers for biomedical applications. Particular emphasis will be given to water-soluble polymer carriers of radionuclides, thermoresponsive polymer radionuclide carriers, thermoresponsive polymers for local brachytherapy, polymer scaffolds modified with (radiolabeled) peptides and polymer copper chelators for the therapy of Wilson´s disease...
October 20, 2016: Physiological Research
Walter H Moos, Carl A Pinkert, Michael H Irwin, Douglas V Faller, Krishna Kodukula, Ioannis P Glavas, Kosta Steliou
Preclinical Research Approximately 2,500 years ago, Hippocrates used the word herpes as a medical term to describe lesions that appeared to creep or crawl on the skin, advocating heat as a possible treatment. During the last 50 years, pharmaceutical research has made great strides, and therapeutic options have expanded to include small molecule antiviral agents, protease inhibitors, preventive vaccines for a handful of the papillomaviruses, and even cures for hepatitis C virus infections. However, effective treatments for persistent and recurrent viral infections, particularly the highly prevalent herpesviruses, continue to represent a significant unmet medical need, affecting the majority of the world's population...
October 20, 2016: Drug Development Research
Sunwon Lee, Donghyeon Kim, Kyubum Lee, Jaehoon Choi, Seongsoon Kim, Minji Jeon, Sangrak Lim, Donghee Choi, Sunkyu Kim, Aik-Choon Tan, Jaewoo Kang
As the volume of publications rapidly increases, searching for relevant information from the literature becomes more challenging. To complement standard search engines such as PubMed, it is desirable to have an advanced search tool that directly returns relevant biomedical entities such as targets, drugs, and mutations rather than a long list of articles. Some existing tools submit a query to PubMed and process retrieved abstracts to extract information at query time, resulting in a slow response time and limited coverage of only a fraction of the PubMed corpus...
2016: PloS One
Ahu Gümrah Dumanlı
Cellulose is a natural linear biopolymer, which constitutes through the assembly of cellulose nanofibrils in a hierarchical order. Nanocelluloses in particular show great promise as a cost-effective advanced material for biomedical applications because of their biocompatibility, biodegradability, and low cytotoxicity. Moreover, with their chemical functionality they can be easily modified to yield useful products. While nature uses the hierarchical nanostructure of the cellulose as the load-bearing constituent in plants, a significant amount of research has been directed toward the fabrication of advanced cellulosic materials with various nanostructures and functional properties...
October 14, 2016: Current Medicinal Chemistry
Balasubramanian Chandramouli, Caterina Bernacchioni, Danilo Di Maio, Paola Turano, Giuseppe Brancato
Ferritin molecular cages are marvelous 24-mer supramolecular architectures that enable massive iron storage (>2000 Fe atoms) within their inner cavity. This cavity is connected to the outer environment by two channels at C3 and C4 symmetry axes of the assembly. Ferritins can also be exploited as carriers for in vivo imaging and therapeutic applications, owing to their capability to effectively protect within the cage cavity synthetic non-endogenous agents and deliver them to targeted tissue cells without stimulating adverse immune responses...
October 18, 2016: Journal of Biological Chemistry
Thavasyappan Thambi, V H Giang Phan, Doo Sung Lee
Stimuli-sensitive injectable polymeric hydrogels are one of the promising delivery vehicles for the controlled release of bioactive agents. In aqueous solutions, these polymers are able to switch sol-to-gel transitions in response to various stimuli including pH, temperature, light, enzyme and magnetic field. Therapeutic agents, including chemotherapeutic agents, protein drugs or cells, are easily mixed with the low-viscous polymer solution at room temperature. Therapeutic-agents-containing solutions are readily injected into target sites through syringe or catheter, which could form hydrogel depot and serve as bioactive molecules release carriers...
October 18, 2016: Macromolecular Rapid Communications
Kejia Hu, Chao Chen, Qingyao Meng, Ziv Williams, Wendong Xu
BACKGROUND: With the tremendous advances in the field of brain-computer interfaces (BCI), the literature in this field has grown exponentially; examination of highly cited articles is a tool that can help identify outstanding scientific studies and landmark papers. This study examined the characteristics of 100 highly cited BCI papers over the past 10 years. METHODS: The Web of Science was searched for highly cited papers related to BCI research published from 2006 to 2015...
October 14, 2016: Neuroscience Letters
Astrid Duque-Ramos, Manuel Quesada-Martínez, Miguela Iniesta-Moreno, Jesualdo Tomás Fernández-Breis, Robert Stevens
BACKGROUND: The biomedical community has now developed a significant number of ontologies. The curation of biomedical ontologies is a complex task and biomedical ontologies evolve rapidly, so new versions are regularly and frequently published in ontology repositories. This has the implication of there being a high number of ontology versions over a short time span. Given this level of activity, ontology designers need to be supported in the effective management of the evolution of biomedical ontologies as the different changes may affect the engineering and quality of the ontology...
October 17, 2016: Journal of Biomedical Semantics
Snober Ahmed, John Brockgreitens, Ke Xu, Abdennour Abbas
With increasing biomedical and engineering applications of selenium nanospheres (SeNS), new efficient methods are needed for the synthesis and long-term preservation of these nanomaterials. Currently, SeNS are mostly produced through the biosynthesis route using microorganisms or by using wet chemical reduction, both of which have several limitations in terms of nanoparticle size, yield, production time and long-term stability of the nanoparticles. Here, we introduce a novel approach for rapid synthesis and long-term preservation of SeNS on a solid microporous support by combining a mild hydrothermal process with chemical reduction...
October 17, 2016: Nanotechnology
Jinwoo Ma, Jaehun Lee, Sang Sub Han, Kyu Hwan Oh, Ki Tae Nam, Jeong-Yun Sun
Protein-based hydrogels have received attention for biomedical applications and tissue engineering because they are biocompatible and abundant. However, the poor mechanical properties of these hydrogels remain a hurdle for practical use. We have developed a highly stretchable and notch-insensitive hydrogel by integrating casein micelles into polyacrylamide (PAAm) networks. In the casein-PAAm hybrid gels, casein micelles and polyacrylamide chains synergistically enhance the mechanical properties. Casein-PAAm hybrid gels are highly stretchable, stretching to more than 35 times their initial length under uniaxial tension...
October 17, 2016: ACS Applied Materials & Interfaces
Mattias Björnmalm, Matthew Faria, Xi Chen, Jiwei Cui, Frank Caruso
The interaction of engineered particles with biological systems determines their performance in biomedical applications. Although standard static cell cultures remain the norm for in vitro studies, modern models mimicking aspects of the dynamic in vivo environment have been developed. Herein, we investigate fundamental cell-particle interactions under dynamic flow conditions using a simple and self-contained device together with standard multiwell cell culture plates. We engineer two particle systems and evaluate their cell interactions under dynamic flow, and we compare the results to standard static cell cultures...
October 17, 2016: Langmuir: the ACS Journal of Surfaces and Colloids
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"