Read by QxMD icon Read

Myocyte regeneration

Klemen Čamernik, Ariana Barlič, Matej Drobnič, Janja Marc, Matjaž Jeras, Janja Zupan
The musculoskeletal system includes tissues that have remarkable regenerative capabilities. Bone and muscle sustain micro-damage throughout the lifetime, yet they continue to provide the body with the support that is needed for everyday activities. Our current understanding is that the regenerative capacity of the musculoskeletal system can be attributed to the mesenchymal stem/ stromal cells (MSCs) that reside within its different anatomical compartments. These MSCs can replenish various tissues with progenitor cells to form functional cells, such as osteoblasts, chondrocytes, myocytes, and others...
March 20, 2018: Stem Cell Reviews
Chayanit Chaweewannakorn, Masahiro Tsuchiya, Masashi Koide, Hiroyasu Hatakeyama, Yukinori Tanaka, Shinichirou Yoshida, Shunji Sugawara, Yoshihiro Hagiwara, Keiichi Sasaki, Makoto Kanzaki
Skeletal muscle regeneration after injury is a complex process involving interactions between inflammatory microenvironments and satellite cells. Interleukin (IL)-1 is a key mediator of inflammatory responses and exerts pleiotropic impacts on various cell types. Thus, we aimed to investigate the role of IL-1 during skeletal muscle regeneration. We herein show that IL-1α/β-double-knockout (IL-1KO) mice exhibit delayed muscle regeneration after cardiotoxin (CTX) injection, characterized by delayed infiltrations of immune cells accompanied by suppressed local production of pro-inflammatory factors including IL-6 and delayed increase of PAX7-positive satellite cells post-injury as compared with those of wild-type (WT) mice...
March 7, 2018: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
Alfonso Saera-Vila, Ke'ale W Louie, Cuilee Sha, Ryan M Kelly, Phillip E Kish, Alon Kahana
Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration...
2018: PloS One
Stefano Schiaffino, Kenneth A Dyar, Elisa Calabria
PURPOSE OF REVIEW: The review is focused on the unexpected role of myogenic regulatory factor 4 (MRF4) in controlling muscle mass by repressing myocyte enhancer binding factor 2 (MEF2) activity in adult skeletal muscle, and on the emerging role of MEF2 in skeletal muscle growth. RECENT FINDINGS: The MRF4s of the MyoD family (MyoD, MYF5, MRF4, myogenin) and the MEF2 factors are known to play a major role in embryonic myogenesis. However, their function in adult muscle tissue is not known...
January 30, 2018: Current Opinion in Clinical Nutrition and Metabolic Care
Milica Tosic, Anita Allen, Dominica Willmann, Christoph Lepper, Johnny Kim, Delphine Duteil, Roland Schüle
Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes...
January 25, 2018: Nature Communications
Caroline Caradu, Alexandre Guy, Chloé James, Annabel Reynaud, Alain-Pierre Gadeau, Marie-Ange Renault
Aim: The purpose of the present study was to investigate the role of endogenous Shh in ischemia-induced angiogenesis. Methods and results: To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in regenerating muscle of Shh deficient mice 5 days after hind limb ischemia (HLI) was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischemia-induced myogenesis...
January 22, 2018: Cardiovascular Research
Matthew D Sutcliffe, Philip M Tan, Antonio Fernandez-Perez, Young-Jae Nam, Nikhil V Munshi, Jeffrey J Saucerman
Direct reprogramming of fibroblasts into cardiomyocytes is a promising approach for cardiac regeneration but still faces challenges in efficiently generating mature cardiomyocytes. Systematic optimization of reprogramming protocols requires scalable, objective methods to assess cellular phenotype beyond what is captured by transcriptional signatures alone. To address this question, we automatically segmented reprogrammed cardiomyocytes from immunofluorescence images and analyzed cell morphology. We also introduce a method to quantify sarcomere structure using Haralick texture features, called SarcOmere Texture Analysis (SOTA)...
January 19, 2018: Scientific Reports
Ewan D Fowler, Cherrie H Kong, Jules Hancox, Mark B Cannell
Rationale: The development of a refractory period for Ca2+ spark initiation after Ca2+ release in cardiac myocytes, should inhibit further Ca2+ release during the action potential (AP) plateau. However, Ca2+ release sites that did not initially activate, or which have prematurely recovered from refractoriness might release Ca2+ later during the AP and alter the cell-wide Ca2+ transient. Objective: To investigate the possibility of late Ca2+ spark (LCS) activity in intact isolated cardiac myocytes using fast confocal line scanning with improved confocality and signal to noise...
December 27, 2017: Circulation Research
Chen Yu Qin, He Cai, Han Rui Qing, Li Li, Hong Ping Zhang
As one of the first identified long non-coding RNAs (lncRNAs), H19 plays a wide range of roles in vivo, including not only as a tumor suppressor and oncogene involved in disease process, but also as a regulator of growth and development of multiple tissues in mammalian embryos. The function of H19 in muscles (both skeletal and cardiac muscle) draws widespread attention due to the following two reasons. On one hand, H19 promotes myogenic differentiation and myogenesis of skeletal muscle satellite cells (SMSCs) via regulating Igf2 in cis...
December 20, 2017: Yi Chuan, Hereditas
Revathy Carnagarin, Mina Elahy, Arun M Dharmarajan, Crispin R Dass
Extensive bone defects arising as a result of trauma, infection and tumour resection and other bone pathologies necessitates the identification of effective strategies in the form of tissue engineering, gene therapy and osteoinductive agents to enhance the bone repair process. PEDF is a multifunctional glycoprotein which plays an important role in regulating osteoblastic differentiation and bone formation. PEDF treatment of mice and human skeletal myocytes at physiological concentration inhibited myogenic differentiation and activated Erk1/2 MAPK- dependent osteogenic transdifferentiation of myocytes...
December 16, 2017: Molecular and Cellular Endocrinology
Aref Shahini, Debanik Choudhury, Mohammadnabi Asmani, Ruogang Zhao, Pedro Lei, Stelios T Andreadis
Adult skeletal muscle regeneration relies on the activity of satellite cells residing in the skeletal muscle niche. However, systemic and intrinsic factors decrease the myogenic differentiation potential of satellite cells thereby impairing muscle regeneration. Here we present data showing that late passage C2C12 myoblasts exhibited significantly impaired myogenic differentiation potential that was accompanied by impaired expression of myogenic regulatory factors (Myf5, MyoD, Myogenin, and MRF4) and members of myocyte enhancer factor 2 family...
December 2, 2017: Stem Cell Research
Lindsey J Anderson, Haiming Liu, Jose M Garcia
With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration...
2017: Advances in Experimental Medicine and Biology
Khawaja Husnain Haider, Salim Aziz, Mateq Ali Al-Reshidi
Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results...
December 2017: Regenerative Medicine
Alessandra de Perini, Ivan Dimauro, Guglielmo Duranti, Cristina Fantini, Neri Mercatelli, Roberta Ceci, Luigi Di Luigi, Stefania Sabatini, Daniela Caporossi
OBJECTIVE: During muscle development or regeneration, myocytes produce nerve growth factor (NGF) as well as its tyrosine-kinase and p75-neurotrophin (p75NTR ) receptors. It has been published that the p75NTR receptor could represent a key regulator of NGF-mediated myoprotective effect on satellite cells, but the precise function of NGF/p75 signaling pathway on myogenic cell proliferation, survival and differentiation remains fragmented and controversial. Here, we verified the role of NGF in the growth, survival and differentiation of p75NTR -expressing L6C5 myogenic cells, specifically inquiring for the putative involvement of the nuclear factor κB (NFκB) and the small heat shock proteins (sHSPs) αB-crystallin and Hsp27 in these processes...
December 4, 2017: BMC Research Notes
Ricardo Londono, Wei Wenzhong, Bing Wang, Rocky S Tuan, Thomas P Lozito
Introduction: Human cartilage is an avascular tissue with limited capacity for repair. By contrast, certain lizards are capable of musculoskeletal tissue regeneration following tail loss throughout all stages of their lives. This extraordinary ability is the result of a complex process in which a blastema forms and gives rise to the tissues of the regenerate. Blastemal cells have been shown to originate either from dedifferentiated tissues or from existing progenitor cells in various species, but their origin has not been determined in lizards...
2017: Frontiers in Bioengineering and Biotechnology
Bruna Cerbelli, Annalinda Pisano, Serena Colafrancesco, Maria Gemma Pignataro, Marco Biffoni, Silvia Berni, Antonia De Luca, Valeria Riccieri, Roberta Priori, Guido Valesini, Giulia d'Amati, Carla Giordano
Anti-synthetase syndrome is an autoimmune disease characterized by autoantibodies toward amino acyl-tRNA synthetases (ARS), anti-Jo 1 being the most commonly detected. Muscle damage develops in up to 90% of ARS-positive patients, characterized by a necrotizing myositis restricted to the perifascicular region. This topographic distribution of muscle damage may lead to a misdiagnosis of dermatomyositis (DM) at muscle biopsy. We compared morphological, immunohistochemical, and histoenzymatic features of muscle from ARS-positive patients (n = 11) with those of DM (n = 7) providing clues for their differential diagnosis...
November 16, 2017: Virchows Archiv: An International Journal of Pathology
Ke'ale W Louie, Alfonso Saera-Vila, Phillip E Kish, Justin A Colacino, Alon Kahana
BACKGROUND: Tissue regeneration requires a series of steps, beginning with generation of the necessary cell mass, followed by cell migration into damaged area, and ending with differentiation and integration with surrounding tissues. Temporal regulation of these steps lies at the heart of the regenerative process, yet its basis is not well understood. The ability of zebrafish to dedifferentiate mature "post-mitotic" myocytes into proliferating myoblasts that in turn regenerate lost muscle tissue provides an opportunity to probe the molecular mechanisms of regeneration...
November 9, 2017: BMC Genomics
Pravin Shende, Hunny Gupta, R S Gaud
The research in stem cells gives a proper information about basic mechanisms of human development and differentiation. The use of stem cells in new medicinal therapies includes treatment of different conditions such as spinal cord injury, diabetes mellitus, Parkinsonism, and cardiac disorders. These cells exhibit two unique properties: self-renewal and differentiation. The major stem cells been used for approximately about 10-14 years for cellular therapy are mesenchymal stem cells. Mesenchymal stem cells can individualize into many lineage, i...
October 25, 2017: Biomedicine & Pharmacotherapy, Biomédecine & Pharmacothérapie
Vahid Serpooshan, Yuan-Hung Liu, Jan W Buikema, Francisco X Galdos, Orlando Chirikian, Sharon Paige, Sneha Venkatraman, Anusha Kumar, David R Rawnsley, Xiaojing Huang, Daniël A Pijnappels, Sean M Wu
During normal lifespan, the mammalian heart undergoes limited renewal of cardiomyocytes. While the exact mechanism for this renewal remains unclear, two possibilities have been proposed: differentiated myocyte replication and progenitor/immature cell differentiation. This study aimed to characterize a population of cardiomyocyte precursors in the neonatal heart and to determine their requirement for cardiac development. By tracking the expression of an embryonic Nkx2.5 cardiac enhancer, we identified cardiomyoblasts capable of differentiation into striated cardiomyocytes in vitro...
October 3, 2017: Scientific Reports
Yang Zhou, Li Wang, Ziqing Liu, Sahar Alimohamadi, Chaoying Yin, Jiandong Liu, Li Qian
Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) or directly reprogrammed from non-myocytes (induced cardiomyocytes [iCMs]) are promising sources for heart regeneration or disease modeling. However, the similarities and differences between iPSC-CMs and iCMs are still unknown. Here, we performed transcriptome analyses of beating iPSC-CMs and iCMs generated from cardiac fibroblasts (CFs) of the same origin. Although both iPSC-CMs and iCMs establish CM-like molecular features globally, iPSC-CMs exhibit a relatively hyperdynamic epigenetic status, whereas iCMs exhibit a maturation status that more closely resembles that of adult CMs...
September 26, 2017: Cell Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"