Read by QxMD icon Read

Brain oscillation

Jing Wang, Zhaofeng Chen, Xiaozhe Peng, Tiantian Yang, Peng Li, Fengyu Cong, Hong Li
To investigate brain activity during the reinforcement learning process in social contexts is a topic of increasing research interest. Previous studies have mainly focused on using electroencephalograms (EEGs) for feedback evaluation in reinforcement learning tasks by measuring event-related potentials. Few studies have investigated the time-frequency (TF) profiles of a cue that manifested whether a following feedback is available or not after decision-making. Moreover, it remains unclear whether the TF profiles of the cue interact with different agents to whom the feedback related...
2016: Frontiers in Psychology
Ayako Yamaguchi, Jessica Cavin Barnes, Todd Appleby
Central pattern generators (CPG) in the brainstem are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying how motor rhythms are generated, coordinated, and initiated remain unclear. We addressed these issues using isolated brain preparations of Xenopus laevis from which fictive vocalizations can be elicited. Advertisement calls of male X. laevis that consist of fast and slow trills are generated by vocal CPGs contained in the brainstem. Brainstem central vocal pathways consist of a premotor nucleus (DTAM) and a laryngeal motor nucleus (n...
October 19, 2016: Journal of Neurophysiology
Henrik Oster, Etienne Challet, Volker Ott, Emanuela Arvat, E Ronald de Kloet, Derk-Jan Dijk, Stafford Lightman, Alexandros Vgontzas, Eve Van Cauter
Adrenal glucocorticoids are major modulators of multiple functions, including energy metabolism, stress responses, immunity, and cognition. The endogenous secretion of glucocorticoids is normally characterized by a prominent and robust circadian (around 24 hours) oscillation, with a daily peak around the time of the habitual sleep-wake transition and minimal levels in the evening and early part of the night. It has been long recognized that this 24-h rhythm partly reflects the activity of a master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus...
October 17, 2016: Endocrine Reviews
Jae W Chung, Edward Ofori, Gaurav Misra, Christopher W Hess, David E Vaillancourt
: Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance...
October 13, 2016: NeuroImage
Dan Denis, Richard Rowe, A Mark Williams, Elizabeth Milne
The human mirror neuron system is believed to play an important role in facilitating the ability of athletes to anticipate the actions of an opponent. This system is often assessed with EEG by measuring event-related changes in mu (8-13Hz) sensorimotor oscillations. However, traditional channel-based analyses of this measure are flawed in that due to volume conduction effects mu and non-mu alpha activity can become mixed. This flaw means it is unclear the extent to which mu activity indexes the mirror system, as opposed to other processes such as attentional demand...
October 13, 2016: NeuroImage
Maximilian H Beck, Jens K Haumesser, Johanna Kühn, Jennifer Altschüler, Andrea A Kühn, Christoph van Riesen
Abnormally enhanced beta oscillations have been found in deep brain recordings from human Parkinson's disease (PD) patients and in animal models of PD. Recent correlative evidence suggests that beta oscillations are related to disease-specific symptoms such as akinesia and rigidity. However, this hypothesis has also been repeatedly questioned by studies showing no changes in beta power in animal models using an acute pharmacologic dopamine blockade. To further investigate the temporal dynamics of exaggerated beta synchrony in PD, we investigated the reserpine model, which is characterized by an acute and stable disruption of dopamine transmission, and compared it to the chronic progressive 6-hydroxydopamine (6-OHDA) model...
October 12, 2016: Experimental Neurology
Douglas McLelland, Rufin VanRullen
Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles...
October 2016: PLoS Computational Biology
Malini Riddle, Erica Mezias, Duncan Foley, Joseph LeSauter, Rae Silver
The hypothalamic suprachiasmatic nucleus (SCN), locus of the master circadian clock, bears many neuronal types. At the cellular-molecular level, the clock is comprised of feedback loops involving "clock" genes including Period1 and Period2, and their protein products, PERIOD1 and PERIOD2 (PER1/2). In the canonical model of circadian oscillation, the PER1/2 proteins oscillate together. While their rhythmic expression in the SCN as a whole has been described, the possibility of regional differences is unknown...
October 14, 2016: European Journal of Neuroscience
Ben Lewis, Jeff Boissoneault, Ian Frazier, Sara Jo Nixon
BACKGROUND: Driver age and blood alcohol concentration are both important factors in predicting driving risk; however, little is known regarding the joint import of these factors on neural activity following socially relevant alcohol doses. We examined age and alcohol effects on brain oscillations during simulated driving, focusing on 2 region-specific frequency bands implicated in task performance and attention: parietal alpha power (PAP; 8 to 12 Hz) and frontal theta power (FTP; 4 to 7 Hz)...
October 14, 2016: Alcoholism, Clinical and Experimental Research
Wolfgang Wiedemair, Zeljko Tukovic, Hrvoje Jasak, Dimos Poulikakos, Vartan Kurtcuoglu
Encapsulated microbubbles (MBs) serve as endovascular agents in a wide range of medical ultrasound applications. The oscillatory response of these agents to ultrasonic excitation is determined by MB size, gas content, viscoelastic shell properties and geometrical constraints. The viscoelastic parameters of the MB capsule vary during an oscillation cycle and change irreversibly upon shell rupture. The latter results in marked stress changes on the endothelium of capillary blood vessels due to altered MB dynamics...
October 12, 2016: Biomechanics and Modeling in Mechanobiology
Joohi Jimenez-Shahed, Ilknur Telkes, Ashwin Viswanathan, Nuri F Ince
Background: Deep brain stimulation (DBS) is an emerging treatment strategy for severe, medication-refractory Tourette syndrome (TS). Thalamic (Cm-Pf) and pallidal (including globus pallidus interna, GPi) targets have been the most investigated. While the neurophysiological correlates of Parkinson's disease (PD) in the GPi and subthalamic nucleus (STN) are increasingly recognized, these patterns are not well characterized in other disease states. Recent findings indicate that the cross-frequency coupling (CFC) between beta band and high frequency oscillations (HFOs) within the STN in PD patients is pathologic...
2016: Frontiers in Neuroscience
Jessica A Cardin
γ oscillations (20-80 Hz) are associated with sensory processing, cognition, and memory, and focused attention in animals and humans. γ activity can arise from several neural mechanisms in the cortex and hippocampus and can vary across circuits, behavioral states, and developmental stages. γ oscillations are nonstationary, typically occurring in short bouts, and the peak frequency of this rhythm is modulated by stimulus parameters. In addition, the participation of excitatory and inhibitory neurons in the γ rhythm varies across local circuits and conditions, particularly in the cortex...
October 12, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Shaul Mezan, Jean Daniel Feuz, Bart Deplancke, Sebastian Kadener
Circadian clocks generate 24-hr rhythms in physiology and behavior. Despite numerous studies, it is still uncertain how circadian rhythms emerge from their molecular and neural constituents. Here, we demonstrate a tight connection between the molecular and neuronal circadian networks. Using fluorescent transcriptional reporters in a Drosophila ex vivo brain culture system, we identified a reciprocal negative regulation between the master circadian regulator CLK and expression of pdf, the main circadian neuropeptide...
October 11, 2016: Cell Reports
Bing Cao, Jun Wang, Mahadi Shahed, Beth Jelfs, Rosa H M Chan, Ying Li
Vagus nerve stimulation (VNS) can enhance memory and cognitive functions in both rats and humans. Studies have shown that VNS influenced decision-making in epileptic patients. However, the sites of action involved in the cognitive-enhancement are poorly understood. By employing a conscious rat model equipped with vagus nerve cuff electrode, we assess the role of chronic VNS on decision-making in rat gambling task (RGT). Simultaneous multichannel-recordings offer an ideal setup to test the hypothesis that VNS may induce alterations of in both spike-field-coherence and synchronization of theta oscillations across brain areas in the anterior cingulate cortex (ACC) and basolateral amygdala (BLA)...
October 12, 2016: Scientific Reports
Sara de la Salle, Joelle Choueiry, Dhrasti Shah, Hayley Bowers, Judy McIntosh, Vadim Ilivitsky, Verner Knott
N-methyl-D-aspartate (NMDA) receptor antagonists administered to healthy humans results in schizophrenia-like symptoms, which preclinical research suggests are due to glutamatergically altered brain oscillations. Here, we examined resting-state electroencephalographic activity in 21 healthy volunteers assessed in a placebo-controlled, double-blind, randomized study involving administration of either a saline infusion or a sub-anesthetic dose of ketamine, an NMDA receptor antagonist. Frequency-specific current source density (CSD) was assessed at sensor-level and source-level using eLORETA within regions of interest of a triple network model of schizophrenia (this model posits a dysfunctional switching between large-scale Default Mode and Central Executive networks by the monitor-controlling Salience Network)...
2016: Frontiers in Pharmacology
Laura D Lewis, Kawin Setsompop, Bruce R Rosen, Jonathan R Polimeni
Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity...
October 11, 2016: Proceedings of the National Academy of Sciences of the United States of America
Ryota Nakazato, Shogo Hotta, Daisuke Yamada, Miki Kou, Saki Nakamura, Yoshifumi Takahata, Hajime Tei, Rika Numano, Akiko Hida, Shigeki Shimba, Michihiro Mieda, Eiichi Hinoi, Yukio Yoneda, Takeshi Takarada
Similar to neurons, microglia have an intrinsic molecular clock. The master clock oscillator Bmal1 modulates interleukin-6 upregulation in microglial cells exposed to lipopolysaccharide. Bmal1 can play a role in microglial inflammatory responses. We previously demonstrated that gliotransmitter ATP induces transient expression of the clock gene Period1 via P2X7 purinergic receptors in cultured microglia. In this study, we further investigated mechanisms underlying the regulation of pro-inflammatory cytokine production by clock molecules in microglial cells...
October 11, 2016: Glia
Omid Talakoub, Bogdan Neagu, Kaviraja Udupa, Eric Tsang, Robert Chen, Milos R Popovic, Willy Wong
We are interested in characterizing how brain networks interact and communicate with each other during voluntary movements. We recorded electrical activities from the globus pallidus pars interna (GPi), subthalamic nucleus (STN) and the motor cortex during voluntary wrist movements. Seven patients with dystonia and six patients with Parkinson's disease underwent bilateral deep brain stimulation (DBS) electrode placement. Local field potentials from the DBS electrodes and scalp EEG from the electrodes placed over the motor cortices were recorded while the patients performed externally triggered and self-initiated movements...
October 11, 2016: Scientific Reports
K Kessler, R A Seymour, G Rippon
Although atypical social behaviour remains a key characterisation of ASD, the presence of sensory and perceptual abnormalities has been given a more central role in recent classification changes. An understanding of the origins of such aberrations could thus prove a fruitful focus for ASD research. Early neurocognitive models of ASD suggested that the study of high frequency activity in the brain as a measure of cortical connectivity might provide the key to understanding the neural correlates of sensory and perceptual deviations in ASD...
October 5, 2016: Neuroscience and Biobehavioral Reviews
Oluwaseun Akeju, Seong-Eun Kim, Rafael Vazquez, James Rhee, Kara J Pavone, Lauren E Hobbs, Patrick L Purdon, Emery N Brown
An improved understanding of the neural correlates of altered arousal states is fundamental for precise brain state targeting in clinical settings. More specifically, electroencephalogram recordings are now increasingly being used to relate drug-specific oscillatory dynamics to clinically desired altered arousal states. Dexmedetomidine is an anesthetic adjunct typically administered in operating rooms and intensive care units to produce and maintain a sedative brain state. However, a high-density electroencephalogram characterization of the neural correlates of the dexmedetomidine-induced altered arousal state has not been previously accomplished...
2016: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"