Read by QxMD icon Read

drop evaporation

Wilma Emanuela da Silva, Jacinara Hody Gurgel Morais Leite, José Ernandes Rufino de Sousa, Wirton Peixoto Costa, Wallace Sostene Tavares da Silva, Magda Maria Guilhermino, Luis Alberto Bermejo Asensio, Débora Andréa Evangelista Façanha
The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS)...
January 16, 2017: International Journal of Biometeorology
François Boulogne, François Ingremeau, Howard A Stone
The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous...
February 22, 2017: Journal of Physics. Condensed Matter: An Institute of Physics Journal
Younghoon Song, Yunjin Jeong, Taehong Kwon, Daewon Lee, Dong Yoon Oh, Tae-Joon Park, Junhoi Kim, Jiyun Kim, Sunghoon Kwon
Although droplet microfludics is a promising technology for handling a number of liquids of a single type of analyte, it has limitations in handling thousands of different types of analytes for multiplex assay. Here, we present a novel "liquid-capped encoded microcapsule", which is applicable to various liquid format assays. Various liquid drops can be graphically encoded and arrayed without repeated dispensing processes, evaporation, and the risk of cross-contamination. Millions of nanoliter-scale liquids are encapsulated within encoded microcapsules and self-assembled in microwells in a single dispensing process...
December 20, 2016: Lab on a Chip
Michael Agthe, Erik Wetterskog, Lennart Bergström
We have studied the growth of ordered arrays by evaporation-induced self-assembly of iron oxide nanocubes with edge lengths of 6.8 and 10.1 nm using video microscopy (VM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ex situ electron diffraction of the ordered arrays demonstrates that the crystal axes of the nanocubes are coaligned and confirms that the ordered arrays are mesocrystals. Time-resolved video microscopy shows that growth of the highly ordered arrays at slow solvent evaporation is controlled by particle diffusion and can be described by a simple growth model...
December 19, 2016: Langmuir: the ACS Journal of Surfaces and Colloids
Magalí Mercuri, Karina Pierpauli, Martín G Bellino, Claudio L A Berli
The fluid-front dynamics resulting from the coexisting infiltration and evaporation phenomena in nanofluidic systems has been investigated. More precisely, water infiltration in both titania and silica mesoporous films was studied through a simple experiment: a sessile drop was deposited over the film and the advancement of the fluid front into the porous structure was optically followed and recorded in time. In the case of titania mesoporous films, capillary infiltration was arrested at a given distance, and a steady annular region of the wetted material was formed...
December 21, 2016: Langmuir: the ACS Journal of Surfaces and Colloids
Mengjiao Wan, Dan Sun, Shuang Wang, Jianguo Wu, Yuanyuan Yang, Kaige Wang, Qingli He, Guiren Wang, Jintao Bai
Stretching and manipulating DNA efficiently is significant for exploring the properties and applications of single DNA molecules. Here, the influence of concentrations of buffer and DNA on properties of stretched DNA molecules in the molecular evaporation combing (MEC) is investigated systematically with the single molecule fluorescence imaging microscopy and the high-precision drop shape analyzing technology. The stretched degree and uniformity of combed DNA molecules decrease as the buffer concentration are increased from 7 to 20mM...
December 3, 2016: Colloids and Surfaces. B, Biointerfaces
Haihua Zhou, Rui Chang, Elsa Reichmanis, Yanlin Song
The resolution of inkjet printing technology is determined by wetting and evaporation processes after the jet drop contacts the substrate. Here, the wetting of different picoliter solubilized polymer droplets jetting onto one-end-closed porous alumina was investigated. The selected polymers are commonly used in inkjet ink. The synergistic effects of the hierarchical structure and substrate surface modification were used to control the behavior of polymer-based ink drops. A model that invokes the effect of surface tension was applied to calculate the amount of polymer solution penetrating into the pores...
December 21, 2016: Langmuir: the ACS Journal of Surfaces and Colloids
Eva Kočišová, Martin Petr, Hana Šípová, Ondřej Kylián, Marek Procházka
Evaporation of a drop of biomolecular solution on a solid surface typically creates a ring-shaped drying pattern, formed by the so-called "coffee ring" effect. The size and shape of the "coffee ring" pattern is strongly dependent on the properties of the surface as well as on the deposited molecular solution or suspension. In this paper, we tested six types of surfaces differing in their physico-chemical surface characteristics (contact angles, wettability and roughness) as well as in the presence or absence of a base metal layer...
December 21, 2016: Physical Chemistry Chemical Physics: PCCP
Thao T T Nguyen, Akshay Kundan, Peter C Wayner, Joel L Plawsky, David F Chao, Ronald J Sicker
Understanding the dynamics of phase change heat and mass transfer in the three-phase contact line region is a critical step toward improving the efficiency of phase change processes. Phase change becomes especially complicated when a fluid mixture is used. In this paper, a wickless heat pipe was operated on the International Space Station (ISS) to study the contact line dynamics of a pentane/isohexane mixture. Different interfacial regions were identified, compared, and studied. Using high resolution (50×), interference images, we calculated the curvature gradient of the liquid-vapor interface at the contact line region along the edges of the heat pipe...
February 15, 2017: Journal of Colloid and Interface Science
Kakoli Banerjee, Roberto Cazzolla Gatti, Abhijit Mitra
The alterations in the salinity profile are an indirect, but potentially sensitive, indicator for detecting changes in precipitation, evaporation, river run-off, glacier retreat, and ice melt. These changes have a high impact on the growth of coastal plant species, such as mangroves. Here, we present estimates of the variability of salinity and the biomass of a stenoecious mangrove species (Heritiera fomes, commonly referred to as Sundari) in the aquatic subsystem of the lower Gangetic delta based on a dataset from 2004 to 2015...
November 1, 2016: Ambio
J T Banasek, J T Engelbrecht, S A Pikuz, T A Shelkovenko, D A Hammer
We have shown that the Zeeman splitting of the sodium (Na) D-lines at 5890 Å and 5896 Å can be used to measure the magnetic field produced by the current flowing in an exploding wire prior to wire explosion. After wire explosion, the lines in question are either not visible in the strong continuum from the exploding wire plasma, or too broad to measure the magnetic field by methods discussed in this paper. We have determined magnetic fields in the range 10-20 T, which lies between the small field and Paschen-Back regimes for the Na D-lines, over a period of about 70 ns on a 10 kA peak current machine...
October 2016: Review of Scientific Instruments
Dong-Ook Kim, Min Pack, Han Hu, Hyoungsoo Kim, Ying Sun
Ellipsoidal particles have previously been shown to suppress the coffee-ring effect in millimeter-sized colloidal droplets. Compared to their spherical counterparts, ellipsoidal particles experience stronger adsorption energy to the drop surface where the anisotropy-induced deformation of the liquid-air interface leads to much greater capillary attractions between particles. Using inkjet-printed colloidal drops of varying drop size, particle concentration, and particle aspect ratio, the present work demonstrates how the suppression of the coffee ring is not only a function of particle anisotropy but rather a competition between the propensity for particles to assemble at the drop surface via capillary interactions and the evaporation-driven particle motion to the contact line...
November 15, 2016: Langmuir: the ACS Journal of Surfaces and Colloids
Michael Agthe, Tomás S Plivelic, Ana Labrador, Lennart Bergström, German Salazar-Alvarez
Mesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops. Analysis of time-resolved small-angle X-ray scattering data and ex situ scanning electron microscopy together with interparticle potential calculations show that the substrate-free, particle-mediated crystallization process proceeds in two stages involving the formation and rapid transformation of a dense, structurally disordered phase into ordered mesocrystals...
November 9, 2016: Nano Letters
Dulcia W N Tan, Soo Ghim Lim, Tina T Wong, Subbu S Venkatraman
Currently, infections following cataract surgery are not as effectively managed with antibiotic eye drops, which suffer from poor bioavailability of drug and low patient compliance. The ideal solution, which can help to overcome the issue of drug wastage and poor bioavailabilty, as well as the need for frequent applications (patient inconvenience), is a drug-eluting intraocular lens (IOL). We describe a novel approach to such a drug-eluting lens by using a peripheral IOL attachment as a drug depot to deliver antibiotics, Levofloxacin (LFX) or Moxifloxacin (MFX)...
2016: PloS One
Victoria C Harrold, James S Sharp
An instrument was developed for measuring real time changes in the surface tension and viscosity of multicomponent droplets of miscible liquids and other soft materials. Droplets containing glycerol and water were supported on superamphiphobic surfaces and vibrated by applying a short mechanical impulse. Laser light was refracted through the droplets and allowed to fall on the surface of a photodiode. Time dependent variations in the intensity measured by the photodiode during vibration were used to monitor the decay of the droplet oscillations...
September 30, 2016: Soft Matter
Hamza Al-Shehri, Tommy S Horozov, Vesselin N Paunov
We prepared model porous composite supra-particles and investigated the effect of the initial infused fluid phase on their attachment at the liquid-fluid interface. We used a simple method for fabrication of millimetre-sized spherical porous supra-particles from much smaller monodisperse latex microparticles as building blocks by evaporation of a polystyrene sulphate latex suspension on a hot super-hydrophobic surface. We annealed the dried supra-particles at the polymer's glass transition temperature to fuse partially their latex particle building blocks...
October 12, 2016: Soft Matter
Joseph J Armao, Jean-Marie Lehn
Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated...
October 17, 2016: Angewandte Chemie
Hyunsook Jung, Dongha Kah, Kyoung Chan Lim, Jin Young Lee
After application of sulfur mustard to the soil surface, its possible fate via evaporation, degradation following absorption, and vapor emission after decontamination was studied. We used a laboratory-sized wind tunnel, thermal desorber, gas chromatograph-mass spectrometry (GC-MS), and (13)C nuclear magnetic resonance ((13)C NMR) for systematic analysis. When a drop of neat HD was deposited on the soil surface, it evaporated slowly while being absorbed immediately into the matrix. The initial evaporation or drying rates of the HD drop were found to be power-dependent on temperature and initial drop volume...
January 2017: Environmental Pollution
Enrique Pérez-Gutiérrez, Denisse Barreiro-Argüelles, José-Luis Maldonado, Marco-Antonio Meneses-Nava, Oracio Barbosa-García, Gabriel Ramos-Ortíz, Mario Rodríguez, Canek Fuentes-Hernández
In this Research Article, the effect of two techniques for top-electrode deposition in organic photovoltaics (OPVs) cells with the configuration ITO/PEDOT:PSS/PTB7-Th:PC71BM/PFN/top-electrode is analyzed. One deposition was made by evaporation under high vacuum, meanwhile the other was carried out at normal room atmosphere; for the former, a double layer of Ca and the eutectic alloy Field's metal (FM) was thermally evaporated, while for the latter FM was deposited just by melting and dropping it on top of the delimited active area at temperatures about 90 °C...
October 12, 2016: ACS Applied Materials & Interfaces
E Cuesta, R L Lozano, E G San Miguel, M Casas-Ruiz, J P Bolívar
This paper relates the calibration of a low background gas-flow proportional counter. This calibration has been used to determine low activity of (234)Th in coastal water samples. Two methods were used to prepare calibration samples: Evaporation and Electrodeposition. First method was rejected due to the lack of reproducibility because the different geometry adopted by the drops of tracer once dried on the disk. On the contrary, through the second method, similar efficiencies were obtained in all detectors with an average of 0...
December 2016: Applied Radiation and Isotopes
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"